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ABSTRACT
An approach is introduced in this paper to track the object motion and estimate pose jointly within the framework of
particle filtering, which can directly estimate the 3D poses from 2D points in the images. The Adaptive Block Matching
technique (ABM) is firstly used to improve the computational efficiency of particle filtering. Next, Scale-Invariant Feature
Transform (SIFT) is applied to extract feature points. We can show that pose estimation from the corresponding points can
be concluded as a Sylvester’s Equation, and the solvent of the equation is the pose state. The weight of particle filtering is
measured by the color histogram, the edge and the distance between corresponding projected feature points. Finally, we
will demonstrate the performance of our algorithm with experimentally results.

Keywords: Pose Estimation, Particle Filtering, Sylvester’s Equation, Lagrange Multiplier

1. INTRODUCTION
Pose analysis is currently one of the most active research topics in computer vision, which aims to recover body poses and
motion parameters from static images or video sequences. The retrieved data have a wide spectrum of promising applica-
tions in many areas such as virtual reality, human-machine interaction, multimedia information coding and transferring.

Many solutions have been proposed by researchers during the past years. Most of them can be classified into two
major categories, feature-based methods and appearance-based methods. Braathen et. al. estimate pose state with particle
filtering, while firstly a set of images are used to estimate the camera parameters and 3D head geometry. A framework
for joint head tracking and pose estimation was realized in,1 with particle filter as well. They also need training data for
modelling with one Gaussian and three Gabor filters. Pose estimation with SVD methods from corresponding points have
been well established,2 but they are utilizing 3D points and the whole theory is based on some orthogonal suppositions,
which is not satisfied in the 2D-2D case.

We employ the feature-base approach in this paper, and apply the 2D points from images to directly estimate the 3D
poses. It can be shown that pose estimation problem can be induced into a Sylvester’s Equation, which can be solved with
many methods, such as Kronecker Product and Bartels-Stewart approach. Moreover particle filtering3 provides a flexible
framework, for it can also deal with nonlinear and non-Gaussian situations. These algorithms have been very popular
in the video tracking from the CONDENSATION algorithm.4 We will also apply the particle filtering method to realize
object tracking and pose estimation simultaneously, and the color histogram, the edge detection and the distance between
projected feature points are measured as the likelihood in this process.

The rest of this paper is organized as follows. Section 2 describes the implement of the particle filtering to realize
object tracking, and Section 3 illustrates the method of pose estimation based on Sylvester’s Equation. Although these two
sections are accomplished simultaneously within the framework of particle filtering in our system, they are bewritten in
separate two sections for the emphasis on pose estimation. In Section 4, experimental results on videos show the efficiency
of our algorithm. And a conclusion is given in Section 5.

The authors would like to thank the Physical Realization Research Center of Excellence, Motorola Labs, for supporting this work.



2. OBJECT TRACKING WITH PARTICLE FILTERING
2.1. Particle Filtering
Particle filer methods are processes to propagate probability densities for moving object based on Bayesian Rules.

p(xk|Z1:k) = βp(zk|xk)p(xk|Z1:k−1) (1)

where x is the state, Z is the observed data, β is a normalized constant, and p(zk|xk) is the likelihood. In our system,
we directly take Nidhal’s tracking program,5 and cite part of her paper in the following. She implements a motion based
particle filter with the Importance Sampling Algorithm. The idea is to put more particles in areas where the posterior
may have higher density to avoid useless particles that lead to more expensive computation. As a result, Adaptive Block
Matching (ABM) algorithm is applied firstly.

For our applications, a head pose estimation system is specified as an example, and a five-parameter super ellipse is
used to model the head state, defined as x = (Ox, Oy, a, b, θ), where (Ox, Oy) are the center, (a, b) are short and long
radius, and θ is the rotation angle in the image plane. Particle filtering is to use Monte Carlo method, to recursively estimate
the density by a set of random particles.

p(xk|Z1:k) ≈
N
∑

i=1

ωi
kδ(xk − xi

k) (2)

where ωi
k, i = 1, ..., N are associated weights for the particles, and N is their total number.

The state transition density has been modelled as a 1st order random walk dynamic system. The likelihood w
(i)
total =

p(Zk|X(i)
k ) = w

(i)
color × w

(i)
edge × w

(i)
feature, where w

(i)
color and w

(i)
edge denote the likelihood based on color and edge of the

ith sample, which are related with the tracking parameters, and w
(i)
feature is computed with the pose parameters. For each

frame, the final output is completed as

x̂k =

N
∑

i=1

ωi
kxi

k (3)

2.2. Color Histogram
The color model proposed in6 is utilized in this paper, which is a simple and well suited system for capturing the multi-
modal patterns of object color. Let qk = {qi

k}i=1,...,n denote the particle histogram and pk = {pi
k}i=1,...,n the model

histogram at time k. A popular measure between two distributions p and q is the Bhattacharyya coefficient

ρ[p, q] =

N
∑

i=1

√

p(u)q(u)du (4)

The larger ρ is the more similar the two distributions are. As a distance between two distributions, we define the
measure

d =
√

1 − ρ[p, q] (5)

Small distances correspond to large weights

w
(i)
color =

1√
2πσc

e
− d2

2σ2
c (6)

which are specified by a Gaussian with variance σc.



The histogram is a simple and well suited system for capturing multi-modal patterns of color of any object. An adaptive
color histogram of the model will not loose the object in case of changing lighting conditions and/or appearance of the
target.

q
(i)
k = (1 − α)q

(i)
k−1 + αq

(i)
E (7)

where q
(i)
E is the histogram of the estimated state vector and α is the forgetting process factor.

To protect the tracker against updating the model when the object has been partially lost, the model histogram is only
updated when the total weight of the estimated state vector is above a specified threshold value.

2.3. Edge Detection
We use the model developed in.4 The observations are collected on normal lines to the contour. Let Zk,ϕ denote the edge
detection observations on line ϕ at time k; Zk,ϕ = Z1, Z2, . . . , ZI . At most one of the I edges is the true contour point.
Let p0 be the prior probability that none of the I edges is the true contour edge. With the assumption that the clutter is a
Poisson process along the line with spatial density γ and the true target measurement is normally distributed with standard
deviation σz, we obtain the edge likelihood model as follows:

p(Zk,ϕ|λϕ) ∝ 1√
2πσzp0γ

exp(− (minj(Zj − λϕ))2

2σ2
z

) (8)

where λϕ represents the pixel along the normal line ϕ belonging to the sample ellipse.

By assuming independence between the different L normal lines, we have the following overall likelihood function for
sample i

w
(i)
edge =

L
∑

ϕ=1

p(Zk,ϕ|λϕ) (9)

2.4. Initialization
To initialize our program, we must circle the object region in the first image with some points manually, and the system
could produce an ellipse with Least-Square method with these points. For example, five to six points are enough to mark
the head. We can also indicate the face with higher accuracy carefully by more points, but it is not necessary for our
algorithm as shown in our experiments.

After the initialization, our system could produce some particles with the pre-defined pdf, and the picture is shown
in Figure 1. To catch up with the fast movement, we need some more separately distributed particles, and the pdf is
correspondingly flat, while for the slow moving object, the pdf is of a sharp peak to put more particles around the last
position.

3. POSE ESTIMATION BASED ON SYLVESTER’S EQUATION
First of all, we should obtain the stable matching pairs between two successive frames. In our system, SIFT is applied,
because it transforms the image data into another scale-invariant coordinates relative to locale features, and can provide the
location as well as scale and orientation for each feature point, which is consequently highly distinctive and robust across
a substantial range of affine distortion, changing in 3D viewpoint, addition of noise and changing in illumination.7

Here only the feature points within the object region in each image are considered. But the area circled usually includes
the region of the scene background and the neck. What’s more, there probably are some errors with the features themselves,
which may result from the incorrectly identified features or distortion in the measurement in feature points with SIFT. As
a result, we firstly get rid of some false pairs by their slope and length. As can be seen in Figure 2, if an arrow’s direction
or length is distinctly different from most of the arrows, it indicates an unwanted pair of feature points which should
be eliminated. RANSAC8 could also be introduced here to estimate the transform matrix without taking account of the
incorrect points.



(Each particle is represented by a blue ellipse.)

Figure 1. Tracking with Particle Filter

(a) (b)

(Feature points extracted from the whole image and from the object region. Arrows indicate the direction and distance of
the motion for each feature point from two successive images.)

Figure 2. Feature Points Extracted with SIFT

And after that, the current problem is how to figure out the rotation angles and translation vector from the matching
points between two successive images.

For a point in the 3D real object, its positions before and after motion have the relationship as follows.
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where R3×3 is a 3 × 3 rotation matrix, and T is a 3 × 1 translation matrix. j, (j = 1, 2, . . .) represents the j th feature
point.

With the perspective projection model, if (uj
1, v

j
1) and (uj

2, v
j
2) are the corresponding projected points in the image

respectively. We have

xj
k
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k

=
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k

f
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k

f
k = 1, 2 (11)

where f is the focus length.

Replacing the unnecessary parameters of points in the real model from the above two equations, we finally get9
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+ T ′ (12)

where T ′ = T · f/zj
2 is the 3 × 1 translation matrix within the image plane.

However zj
1/zj

2 is unknown for each pairs of points in the images. It also indicates that the primary difficulty in
completing these systems is that the depth information is lost in the process of projecting 3D object into 2D images. We
will take some measures to solve the problem while less affecting the accuracy of our algorithm.

As regards to this problem, we have two methods. The first one is to deem all of the feature points in the same plane;
that is all of their Z coordinates are set to the same. It is reasonable to make such an assumption as zj

1 and zj
2 are comparably

large and the change in the Z direction is very small between the immediate frames from a video. As a result, z j
1/zj

2 = 1.
Adams et. al10 showed that this simple homography-based method worked fast and accurately when the planar assumption
is valid, and accuracy degrades as the excursions from the plane become significant. In our experiments, results under this
supposition are generally acceptable.

What’s more, similar to,11 we can also model the 3D face as a ball, and zj can be estimated as

zj = d +
√

b2 − (uj)2 − (vj)2 (13)

where b is the long radius of the super-ellipse, and d is estimated distance between the object and the camera, which
could be utilized to adjust our final results. The bigger d is, the closer to 1 the factor zj

1/zj
2 is. This method also has

better perform than the former one through our experiments, and d is usually between 100 and 1000 pixel. For a clearer
deduction, we assume that this factor has be compensated in the following, so Eq. 12 is simplified as
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What’s more, if we delete the third line, Eq. 14 becomes
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(15)

By rearranging the matrix equation, we get

(
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2

)

=

(

r11 r12

r21 r22

)(
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1

vj
1

)

+

(

lx
ly

)

(16)

where lx = r13f + t′x and ly = r23f + t′y.

All of the above is just for one point, and generally more than five matching points within the object region could be
obtained with SIFT. So if we take Least-Square Error as the criterion, the 2D-2D pose estimation problem is concluded as

min (U2 − R1P1 − Lx)(U2 − R1P1 − Lx)T

+ (V2 − R2P1 − Ly)(V2 − R2P1 − Ly)
T (17)

subject to
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and the translation vector L =

(
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)

=

(

lx lx . . .
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)

.

We can apply Lagrange method to solve the constrained optimization problem.

F = (U2 − R1P1 − Lx)(U2 − R1P1 − Lx)T

+ (V2 − R2P1 − Ly)(V2 − R2P1 − Ly)T

+ λ1(R1R
T
1 + r2

13 − 1) + λ2(R2R
T
2 + r2

23 − 1)

+ 2λ3(R1R
T
2 + r13r23) (18)

where λ1, λ2 and λ3 are Lagrange multipliers.

Then the partial derivatives of F are taken, for the rotation coefficients and translation coefficients respectively.

{ ∂F
∂R1

= −U2P
T
1 + R1P1P

T
1 + λ1R1 + λ3R2 + LxP T

1 = 0
∂F
∂R2

= −V2P
T
1 + R2P1P

T
1 + λ2R2 + λ3R1 + LyP

T
1 = 0

(19)

{

∂F
∂Lx

= −U2 + R1P1 + Lx = 0
∂F
∂Ly

= −V2 + R2P1 + Ly = 0
(20)

From Eq. 20, we can obtain

L =
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Ly

)

=
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U2 − R1P1

V2 − R2P1

)

(21)

As can be seen, there is only one translation coefficient for all the feature points in a frame. Therefore, we can take
the same method as in,12 and the translation vector is quickly determined from the following equation once the rotation
parameters are known.
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)

=

(

u2
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)

−
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=
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, the mean of the feature points in the image

coordinates from the two sequential images, and M is the number of feature points.

If we define P2 =
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)
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, then replace the

translation vector in Eq. 23 with these results.

{
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T
1 + R1(P1 − P1)P

T
1 + λ1R1 + λ3R2 = 0
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T
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T
1 + λ2R2 + λ3R1 = 0

(23)



Before further deduction, some vectors are defined here, P ′
2 =
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2
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2

)
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)

, P ′
1 = P1 −P1, A = P ′

1P
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T
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Eq. 23 can be simplified as

{

−U ′
2P

T
1 + R1A + λ1R1 + λ3R2 = 0

−V ′
2P T

1 + R2A + λ3R1 + λ2R2 = 0
(24)

which can be further combined in one matrix equation.

−B + R2×2A + ΛR2×2 = 0 (25)

where Λ =

(

λ1 λ3

λ3 λ2

)

.

Eq. 25 is Sylvester’s Equation, which is also called Lyapunov’s Equation in the special case with Λ = AT .

Once the equation is solved, the angles rotating from the immediate former frame is obtained, and to accumulate all of
the past data, the current pose is acquired. There is also the situation that we cannot obtain more than 3 points within the
object region by SIFT. Here we just keep and show the results of the last frame.

3.1. Sylvester’s Equation and SVD
In this section, we point out that SVD method offers a solution for the Sylvester’s Equation in the 3D-3D case; while in the
2D-2D case, the Sylvester’s Equation could not be solved by SVD.

As shown in,12 they also obtain the same equation as Eq.25 in the 3D-3D case.

−B + RA + ΛR = 0 (26)

where RRT = I and R is a 3 × 3 matrix, and Λ =





λ1 λ4 λ5

λ4 λ2 λ6

λ5 λ6 λ3



. A and B are similar as above.

Quickly we can get the value of Λ by right multiply RT .

Λ = BRT − RART (27)

Because Λ is symmetric and RART is symmetric too, we have

BRT = (BRT )T = RBT (28)

The same as in paper,12 SVD can be applied in the following.

B = USV T (29)

And we have the final solution.

R = UV T (30)

On the other hand, in the 2D-2D case, the orthonormality constraints have be changed in the deduction, R2×2R
T
2×2 =

(

1 − r2
13 −r13r23

−r13r23 1− r2
23

)

, which is an arbitrary matrix, and SVD approaches cannot be applied. However it can be com-

puted with Kronecker Product, Bartels-Stewart approaches or some numerical methods.



3.2. Kronecker Produc
Kronecker product has a thriving application in image processing and signal processing, and it provides a very effective
way for fast linear transforms. And with the increasing power of computers, this important matrix operation will play a
greater role in the future.13 An example solvent with Kronecker Product and vec operator is

vec(R2×2) = (I ⊗ Λ + A ⊗ I)−1vec(B) (31)

More information about Kronecker Product and vec operator can be found in.13

3.3. Error Analysis
Another limitation in the existing solutions for pose estimation problems is that the error analysis is seldom conducted.
But benefiting from the thorough investigation about Sylvester’s Equation in the past years by researchers from the mathe-
matics, automatic control and other fields, we can directly apply their perturbation theory into our system.

According to Higham,14 the perturbed Sylvester’s Equation is considered.

(Λ + ∆Λ)(R2×2 + ∆R2×2) + (R2×2 + ∆R2×2)(A + ∆A)

= B + ∆B (32)

we have the following results

‖∆R2×2‖F

‖R2×2‖F
≤

√
3εΦ (33)

where

Φ = ‖P−1‖2
(‖Λ‖F + ‖A‖F )‖R2×2‖F + ‖B‖F

‖R2×2‖F

ε = max{‖∆Λ‖F

‖Λ‖F
,
‖∆A‖F

‖A‖F
,
‖∆B‖F

‖B‖F
} (34)

And P = I ⊗ Λ + A ⊗ I . Here the Frobenius norm is used, ‖X‖F = (Σij |xij |2)1/2 and ‖Y ‖2 = (Y T Y )1/2.

3.4. Lagrange Multipliers
The difficulty in our method is that the matrix Λ is unknown. In our experiments, we firstly calculating an approximation
of R2×2. For example, if we replace the translation vector in Eq. 16 with Eq. 21, and then we can obtain the following
with the least square method.

R2×2 = P ′
2P

′T
1 (P ′

1P
′T
1 )−1 (35)

And then put back to Eq. 25 to calculate the Λ, which is the initial evaluation. We should also compute iteratively to
get a Λ such that the following equation satisfies.

min ‖R1R
T
2 ±

√

(1 − R1RT
1 )(1 − R2RT

2 )‖ (36)

where whether + or − can be decided by the direction of the rotation.



3.5. Distance Between Projected Feature Points

With the obtained rotation values R2×2E and translation parameters LE, we can compute w
(i)
feature. Firstly, the feature

points from the first frame are projected into the second frame, and the projected points (uj
12, v

j
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Because there are usually more than five pairs filled, we cannot guarantee uj
12 = uj

2 and vj
12 = vj

2. Obviously small
distances are evaluated with large weight, calculated as

w
(i)
feature = Σj

1
√

(uj
2 − uj

12)
2 + (vj

2 − vj
12)

2

(38)

4. EXPERIMENTAL RESULTS
We have demonstrated our algorithm on different image sequences with preliminary results. The out of plane rotation is
the most useful in pose estimation, so these two angles are shown above and left respectively. The scale of the object is
identified by the size of the ellipse. Moreover the orientation of the ellipse also indicates the in-plane rotation angles.

We have used 50 particles per frame in all the following simulations. To compare our proposed Sylvester’s Equation
approach against the state of the art, we also implemented an approach with Essential Matrix (EM)15 and the method (GM)
in.16 We also employ the Pointing database17 to build the head pose models, and each pose is trained by nine samples.
Our emulation is different with their original one mainly in two aspects. In,16 they claimed that they chose K = 2 clusters
when dealing with the feature vectors, but here we just realized K = 1 for the simplification. On the other hand, to further
make the head models more robust to background clutter, they also learned a face skin model from the training data, but
we do not append this part.

The Girl sequences ∗ has 318 frames with a resolution of 720 × 576 pixels and a frame rate of 25 frames per second
(fps). But in our experiments, it is firstly resized as 128×96 pixels, and the head region is about 40×40 pixels. A girl with
a shock of black hair looked right, left, up and down respectively, and almost fully turned in each direction. This video
has clear blue background, and is uniformly lighted excepted some eventual frames. We use this video to demonstrate the
robustness of our Sylvester’s Equation (SE) algorithm for the large angles.

As can be seen from Figure. 3 (a) and (b), we compare our proposed SE method with GM approach16 with this test
video. Generally our proposed SE method could catch the movement closely, and the false estimation in the other direction
is also mostly depressed.

These two figures also indicate that our SE method performs better with the shaking movement than the nodding
moving, which can be explained. Firstly we model the head as a ball, so it should be symmetric in all four directions. This
assumption is accurate with the horizontal movement, but is not the fact in the vertical direction, because when a person
look up and down with large angles, the rotation center is not the ball center any more. And it cannot be rectified with an
ellipsoid model either, so we take the measure of shifting the center a little downwards to simulate the actual human head
rotation.

On the other hand, the GM16 method could output just some discrete pose states because of the limited training.
What’s more, these results are not stable and always flipping. Particularly as can be seen in Figure. 4 (a), these four
successive frames have the same pose state, but the GM approach outputs three different estimation results because of
the tiny difference in the head region resulting from the tracking outputs. Although it has combined tracking and pose
estimation within the framework of particle filtering, the GM algorithm is still sensitive to the tracking steps, because it is
a template matching method after all. In comparison, the output with our method is stable, and not so sensitive to tracking
results, because we have discarded some falsely matched feature pairs automatically.

∗These image sequences are downloaded from http://sampl.ece.ohio-state.edu/database.htm



(a) (b)

(The red curve is the true value, the cyan one is the result from GM method16 and the blue one is with our proposed SE
method. The line in the middle is the output noise in the other direction with our SE method. )

Figure 3. Pose Estimation for Girl Shaking and Girl Nodding

(a)

(b)

Figure 4. Pose Estimation results of the video Girl Shaking: (a) GM method16; (b) the proposed SE algorithm

The test video Boy Nodding † has 217 frames. The resolution is 320×240 and the frame rate is 30 fps. With a complex
background, a boy is nodding slightly and frequently. This demo is not very clearly shot, and is used to show the sensitivity
of our algorithm.

As shown in Figure. 5 (a), GM method16 performs much worse comparing the above experiment. Because we trained
the system with some clearly identified pictures, and the above test video is also with the good illumination, but this video
is dark. As can be seen from Figure. 6, because the video is not so clear, it is harder to track the head movement and extract
enough information from these sequences. The GM approach is a template-matching method, and these kinds of methods
are generally sensitive to the illumination environments.

We also compared our proposed SE method with a version of first tracking and then pose estimation approach (TP)
with the same coefficients as in the SE algorithm. And the output error is shown in Figure. 5 (b). As can be seen in Figure.
5 (a), the TP method also follows the true values closely, which indicates that our proposed method is not sensitive to the

†These image sequences are downloaded from http://www.cs.bu.edu/groups/ivc/data.php



tracking results. We have explained that some false corresponding feature pairs have been deleted by their length and slope,
so our proposed method will be accurate if most of the features are correctly identified.

It is obvious that our proposed SE method is better than the traditionally first tracking and then pose estimation method.
The reason is that in Section 3.5, the points are projected back with the estimated parameters to measure the weights of
particle filtering, which is some kind of a feedback process to choose the best evaluated particles for the next frame. We
applied just 50 particles for these experiments, and less noise in Figure. 5 (b) could be achieved with more particles.

On the other hand, as shown in Figure. 6, although there is some noise in our methods, but generally it does not affect
the accurate to catch the true values.

(a) (b)

( (a) The red curve is the true value, the cyan one is the result from GM method,16 the blue one is with our proposed SE
method, and the green curve results from TP method. (b) These two lines are the output noise in the shaking direction
from SE and TP algorithm respectively. )

Figure 5. Pose Estimation for Boy Nodding and the Noise in the other direction.

5. CONCLUSIONS
This paper introduces a method to put tracking and pose estimation simultaneously within the framework of particle
filtering. Our approach could directly estimate the 3D transform parameters from 2D feature points in the images, without
constructing a 3D model or system training and learning before hand. The motion based particle filter is applied to improve
the computational efficiency. SIFT and Sylvester’s Equation are utilized to estimate the rotation parameters from feature
points between successive frames. The application of our method can be extended beyond human head, such as cars, doors
and buildings.

REFERENCES
1. S. O. Ba and J. M. Odobez, “A probabilistic framework for joint head tracking and pose estimation,” in Proceedings

of 17th International Conference Pattern Recognition, 4, pp. 264–267, 2004.
2. K. S. Arun, T. S. Huang, and S. D. Rlostein, “Least-squares fitting of two 3-d point sets,” IEEE Trunsactions on

Pattern Analysis and Machine lntelligence 9(5), pp. 698–700, 1987.
3. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for. online nonlinear/non-

gaussian bayesian tracking,” IEEE Transactions Signal Processing 50(2), pp. 174–188, 2002.
4. M. Isard and A. Blake, “Contour tracking by stochastic propagation of conditional density,” in Proceedings European

Conference on Computer Vision, pp. 343–356, 1996.



(a)

(b)

(c)

Figure 6. Pose Estimation results of the video Boy Nodding: (a) GM method16; (b) TP approach; (c) the proposed SE algorithm

5. N. Bouaynaya and D. Schonfeld, “Complete system for head tracking using motion-based particle filter and randomly
perturbed active contour,” in Proceedings of SPIE, Image and Video Communications and Processing (IVCP’05),
5685, pp. 864–873, 2005.

6. K. Nummiaroa, E. K. Meierb, and L. V. Gool, “An adaptive color-based particle filter,” Image and Vision Computing
21(11), pp. 99–110, 2002.

7. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision
60(2), pp. 91–110, 2004.

8. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography,” Communication of the ACM 24(6), pp. 381–395, 1981.

9. A. A. T. Jebara and A. Pentland, “3d structure from 2d motion,” IEEE Signal Processing Magazine 16(3), pp. 66–84,
1999.

10. S. S. H. Adams and D. Strelow, “An empirical comparison of methods for image-based motion estimation,” in
IEEE/RSJ International Conference on Intelligent Robots and System, 1, pp. 123–128, 2002.

11. Q. Ji, “3d face pose estimation and tracking from a monocular camera,” in Image and Vision Computing, 2002.
12. R. M. Haralick, C.-N. L. H. Joo, V. G. V. X. Zhuang, and M. B. Kim, “Pose estimation from corresponding point

data,” IEEE Trunsactions on Systems, Man and Cybernetics 19(6), pp. 698–700, 1989.
13. C. F. V. Loan, “The ubiquitous kronecker product,” Journal of Computational and Applied Mathematics 123, pp. 85–

100, 2000.
14. N. J. Higham, “Perturbation theory and backward error for ax+xb=c,” in Numerical Analysis Report No. 211, Univer-

sity of Manchester, 1992.
15. X. Zhuang and T. S. Huang, “Two-view motion analysis: a unified algorithm,” Journal of the Optical Society of

America A: Optics, Image Science, and Vision 3(9), pp. 1492–1500, 1986.
16. S. O. Ba and J. M. Odobez, “Evaluation of multiple cues head pose tracking algorithm in indoor environments,” in

Proceedings of International Conference on Multimedia and Expo, ICME 2005, 2005.
17. “Pointing’04 icpr workshop: Head pose image database,” in http://www-prima.inrialpes.fr/Pointing04/data-

face.html, 2004.


