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Virtual Focus and Depth Estimation
From Defocused Video Sequences
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Abstract—In this paper, we present a novel method for virtual
focus and object depth estimation from defocused video captured
by a moving camera. We use the term virtual focus to refer
to a new approach for producing in-focus image sequences by
processing blurred videos captured by out-of-focus cameras.
Our method relies on the concept of Depth-from-Defocus (DFD)
for virtual focus estimation. However, the proposed approach
overcomes limitations of DFD by reformulating the problem in
a moving-camera scenario. We introduce the interframe image
motion model, from which the relationship between the camera
motion and blur characteristics can be formed. This relationship
subsequently leads to a new method for blur estimation. We finally
rely on the blur estimation to develop the proposed technique for
object depth estimation and focused video reconstruction. The
proposed approach can be utilized to correct out-of-focus video
sequences and can potentially replace the expensive apparatus
required for auto-focus adjustments currently employed in many
camera devices. The performance of the proposed algorithm is
demonstrated through error analysis and computer simulated
experiments.

Index Terms—Depth estimation, depth-from-defocus, image re-
construction, virtual focus.

I. INTRODUCTION

MAGE focus is one of the main concerns in both camera

design and automated machine vision applications. Current
auto-focus solutions used in commercial cameras are designed
to ensure that captured images are in focus by adjusting the lens’
position. A motor is used to move the position of the camera lens
along the optical axis to take multiple pictures. Optimization of
focus measures is subsequently used to search for the in-focus
setting which is used to capture the focused image. Many image
focus measures have been investigated and compared, such as
gradient, Laplacian and other image moments [1]-[3]. A dis-
advantage of the auto-focus solution is that it requires a focal-
length changing lens and an accurate engine to move the lens
with a particular step size. Moreover, it has the fundamental
limitation that when the scene contains multiple objects with
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largely varying depths, a single image cannot capture all the
objects in focus simultaneously. In this paper, we propose to
rely on image processing solutions, which we refer to as virtual
focus. Specifically, we aim to produce images that are focused
on multiple objects from out-of-focus moving cameras that have
fixed lenses and no motors to move the lenses. We model the
out-of-focus lens as a linear filter whose impulse response is
known as the Point Spread Function (PSF). Knowledge of the
PSF can be used to recover the focused image through a decon-
volution process. Two major questions arise in a virtual focus
problem: (1) How should we model the out-of-focus blur rep-
resented by the PSF? (2) How should we estimate the focused
image using the PSF?

The use of multiple images in video sequences to improve
the performance of image processing tasks has been demon-
strated to be an effective approach. In particular, several algo-
rithms have proposed to use images focused at different depths
as an effective means to image reconstruction. For example,
Kubota and Aizawa [5] proposed to use two images, one image
focused on the foreground and the other focused on the back-
ground, in order to estimate the blur radius. A more general mul-
tiframe reconstruction algorithm has been developed for super-
resolution [6]. It extends the classical single-image deconvolu-
tion methods, such as the Wiener filter, Least-Square (LS) and
Maximum Likelihood (ML) estimations, to their counterparts
using multiple observed images. However, super-resolution as-
sumes a known PSF, and, thus, it addresses only the second
question of estimating the focused image using the PSF. It does
not solve the first question of modelling and estimating the blur
represented by the PSF based on multiple images. An multi-
frame algorithm of out-of-focus blur estimation which has at-
tracted a great deal of attention during the past decade is depth-
from-defocus (DFD). Not only can DFD be used to estimate
the blur, it also provides an estimate of the object depth, which
is conventionally achieved using stereo vision [7]. The virtual
focus estimation technique proposed in this paper lies in the cat-
egory of DFD algorithms and provides a major contribution to
PSF estimation.

The overall philosophy of DFD is based on a fundamental
observation that the blur characteristic relates only to the ob-
ject depth and the physical parameters of the camera system.
Although this relationship is generally derived under first-order
optics approximations, the observation has been verified by the
reliable and consistent performance of DFD algorithms [8]. The
DFD technique [9], [10] applies two settings of the camera pa-
rameters in order to acquire two images with different blur. By
assuming Gaussian PSF model, a closed-form solution of the
blur parameters can be derived. An extended solution has been
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provided in [11] considering the PSF of a cylindrical form. The
PSF has also been approximated by a parametric polynomial
whose coefficients can be estimated using the least-square cri-
teria [12]. More general DFD techniques have been proposed in
[13] and [14], where specific PSF models are not required. Sub-
barao, et al. [15] proposed an image recovery method under the
DFD framework. In a more recent work [16], the DFD technique
has been combined with stereo for image reconstruction using
a Markov random field model to improve the accuracy. Studies
have also been conducted in order to select the optimal camera
parameters to complement DFD. The optimization criteria em-
ployed are based on minimizing the Mean-Square-Error (MSE)
due to perturbations [17] or predicting the Cramer-Rao bound
(CRB) [18].

Existing DFD techniques of estimating the PSF have a solid
theoretical foundation, however, they impose a high require-
ment on the hardware. Changing camera settings, such as
camera aperture and focal length, cannot be performed without
a sophisticated lens system. The practical utility of DFD tech-
niques is, therefore, limited for many imaging applications. The
algorithm proposed in this paper, on the other hand, is designed
for a “rigid” camera whose physical parameters are fixed.
Instead of changing the camera settings to acquire multiple
images with different levels of image blur, we assume a moving
camera, and, thus, the position of the camera is different for
distinct images. Based on the concept of DFD, the relationship
between the camera motion and blur characteristics can be
derived. Estimate of the blur and object depths can also be
developed. Therefore, the proposed technique can be applied
to inexpensive digital cameras that do not require sophisticated
hardware, such as mobile-phone and web cameras. Another
contribution of the proposed algorithm is to exploit multiple
images in the video sequence captured by the moving camera.
Images captured from different camera positions not only
provide multiple images with distinct blur characteristics, but
can also be used to further improve the estimation accuracy.
The proposed algorithm can be used for both blur estimation
and image recovery based on two or more images in the video
sequence.

This paper also provides a novel method for estimation of
the Phase Transfer Function (PTF). It has been a popular as-
sumption that the PSF, and the corresponding camera lens, are
spatially isotropic and, thus, its Fourier transform, also known
as Optical Transfer Function (OTF), is a real-valued function
with only modulus components. However, in general, this as-
sumption does not provide an accurate model for real camera
systems. The camera lens is endowed with various properties
and manufacturing imperfections, which inevitably introduce a
phase component to the OTF, referred to as the PTF. Modelling
and estimation of the PTF has always been a challenge for image
reconstruction. The difficulty in phase estimation is exacerbated
by the fact that the phase often appears to be “pseudo-random”
and the quality of image processing tasks is generally sensitive
to the accuracy of the phase. Several techniques have been pro-
posed for PTF estimation, including the technique of “Phase
from Magnitude” based on projection onto convex sets (POCS)
[19]. The main disadvantage of this approach is that it provides
an iterative scheme that is not guaranteed to convergence to the

true phase. In this paper, we propose a noniterative approach for
estimation of the PTF within the virtual focus estimation frame-
work.

The rest of this paper is organized as follows. Section II
introduces the camera and imaging model required to define
the problem of virtual focus estimation from a moving camera.
In Section III, we provide three approaches to blur estimation,
based on different PSF models. The noisy performance of the
proposed approach is analyzed in Section IV. In Section V,
we use multiple images to further improve the quality of blur
estimation and video reconstruction. We extend the proposed
blur estimation to incorporate the Phase Transfer Function in
Section VI. Simulation results demonstrating the merit of the
proposed algorithm are provided in Section VII. Finally, a
summary on our results is presented in Section VIII. Prelim-
inary results of our investigation of virtual focus from video
sequences have appeared in [20] and [21].

II. CAMERA AND IMAGING MODEL

We begin by considering a scenario in which there is a moving
camera taking a video of a static object. The camera is a rigid
camera, meaning that it has a fixed lens aperture, focal length
and image plane-to-lens distance. Assume one point P in the
object with coordinates in camera coordinate system at time ¢
being [Xo, Yo, Zo]T. In time ¢/, camera has been moved by a
rotation and a translation while the point P remains in the same
position in world coordinates. The new coordinates for P at time
t'is [X1, Y1, Z1]T, also in camera coordinate system. These two
coordinates can be related by the following 3-D transform:

(X1 Y1 Zi)" = Raxsx[Xo Yo Zo" +Tsx1 (1)
where R3y3, T3x1 are the opposite transform of the camera’s
rotation and translation correspondingly. By perspective projec-
tion [22], the image coordinates of P in frame & for time ¢ and
frame &’ for time ¢’ are given by

Ai ,
iy w]" =[N Vi Z]T, =01 Q)

where ) is the image plane-to-lens distance. From (1), (2) and
by expanding R3x3, T5x1 to show the full entries, we have the
following relationship between two image coordinates:

z1 A Zo | THL Ti2 T3 Zo A Tz
Y1 | = WA o1 To2 T3 | k| Yo | + 7 Ty
V1 O Trgy 7130 733 Ug YTz

Denote f to be the focal length of the camera. When point
P is in-focus, we have 1/f = (1/\;) + (1/Z;),i = 0, 1. It is
easy to verify that (A1 /o) - (Zo/Z1) = (Zo— f)/(Z1— ) and
M/Zy = f/(Z1 — f), based on which (3) yields

7o _

z1 = ZT - ;(Tuﬂco + r1290) + Zli—f(Tx + r1320);
70—

Y1 = ZT — j;(rzwo + r22y0) + Zli_f(Ty + 123 2).
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The matrix form of above two equations relates [z, yo] in frame
k and [21,y1] in frame &’ by a 2-D affine transform:
B T21

1 T12 | | %o 2%

bzl wllle ] e
where o, = (f/(Z1=F))(Tetr13%0), by = (f/(Z1= )Ty +
rosZo). Zo and Z; are distances between the object and the
camera lens, in time ¢ and time ¢’ respectively, which are com-
monly referred as depths of the object. For the sake of simplicity,
we assume for the rest of the derivation that the camera observes
one planar object, or the objects has one uniform depth. Under
this circumstance, the parameters (Zo — f)/(Z1 — f), t, and ¢,
become global regardless of spatial coordinates; therefore, the
above affine model holds for the whole image. The assumption
is also known as weak perspective projection [22], which is con-
sidered to be a good approximation when the depth variation of
the object is small comparing to the field of view. In the case of
large depth variation and multiple objects, the assumption that
the objects in the scene have planar surfaces or near-planar sur-
faces is justified on local image patches whose sizes are chosen
to be small enough to ensure a uniform depth. The algorithm to
be proposed is then applied to the image patches instead of the
entire image.

Define s 2 (Zo — f)/(Z1 — f), which represents the scaling
factor between the two images as measured in terms of pixel
coordinates (depths to be more specific), reflecting how the en-
tire image scales. Denote the Fourier transform of frame £ and
frame k' as Fy(u, v) and Fi(u,v). According to the affine the-
orem for 2-D Fourier transform [23], (4) implies Fo(u,v) and
F'i(u,v) have the following relationship:

_ Zo — f [Tu

1 ST99lU— ST91V —ST12U+ST11vV
F1 (’U,7 ’U) = —FO

N A A

/'2
-exp {‘% [(s799t, — sT12ty )u+(sT11t, —STgltm)’U]} 5)

where A 2 s2(r117m22 — T12721). Using motion estimation
and image registration techniques [24], [25], we can always
compensate for rotation and align the observed images prior
to further processing. Therefore, we only discuss in this paper
when the rotation matrix is identity, i.e., 711 = 7192 = 1 and
r12 = 1r91 = 0. It is easy to verify that (5) reduces to

Fy(u,v) = %F{) (E, E) exp {j27r (tgfE + tyg)} . (6)
S 5's 5 5
The above derivation holds for an in-focus camera. When
a camera is out of focus, the resulting image can be regarded
as the in-focus image blurred by a specific PSF. A common
assumption for out-of-focus PSF is that its characteristics are
uniquely determined by the blur radius R. We express this
blurring processing in frequency domain as the spectrum of

observed blurred image Y (u,v) equals the original spectrum
F(u,v) times the OTF H(u, v, R)

Yi(u,v) = Fi(uvv)H(uvvvRi)v 1=0,1 (7
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With (6) and (7), we have

s’ s
) te ty

xexrpq 727 | u— +v— . (8
s s

In this and the following three sections, we model the PSF as
a symmetric function, and, thus, the OTF being a real function.
Therefore, we consider only the magnitude component of (8)

H(u7v7 Rl)

H(u/s,v/s,Ro)" ©)

2 [Yi(u,0)| = ‘YO (“ 3)

]
s S

One can see that under this assumption, it is not necessary to
estimate the translation parameters since the presence of trans-
lation only leads to a phase change in the frequency domain of
the observed image. Therefore, estimation of the blur param-
eter will not be affected by translation unless the translation
results in a significant change in the image content. However,
as mentioned before, when in-plane rotations presented, motion
estimation and registration techniques are needed to register the
observed images before they can be used for estimation. In prac-
tice, the assumption of OTF being a real function may not hold
in general since the imperfection of the lens system introduces
phase component into OTF. We will discuss the effect of the
phase component and how to estimate it in a later section.

To proceed, we need to incorporate the knowledge from optic
geometry. The blur radius is given as a function of object depths
and camera parameters [9]

(10)

which is equivalent to

11 R\ .

where ) is the image plane-to-lens distance, L is the radius of
lens aperture, and Z is the depth of the object. We see that with
estimates of the blur radii, the above relationship can be used to
provide estimates of the object depth. It can also be seen that the
blur radius is affected only by the object depth once the camera
parameters are fixed. From the definition of s, we can continue
to write s as a function of the blur radii Ry and R,

_Zo=f _RotL Ri+L-AL/f
Zi—f Ri+L Ro+L-\LJf

12)

To recover the focused images from the blurred images, we
need to estimate the OTF, which equals identifying the blur ra-
dius. With A, L, f being known camera parameters, we will see
in the following section that based on (9) and (12), it is possible
to solve for s, Ry, Ry, thus H(u,v, Ry) and H(u, v, Ry).

III. BLUR ESTIMATION

In this section, we will present our algorithm based on three
types of PSF. In all the cases, we begin by assuming the energy
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conservation constraint [26], namely H (0,0, R) = 1. Thus, s
can be solved by noticing the DC components in (9) yields

S =/ YQ(OO)/Yl(0,0)

Define Z(u,v) as the ratio of two corresponding frequency
components from two observations, i.e.,

13)

5 o M)l
20 0) = S e )]

Therefore, using (9), we obtain

H(u,v,Ry)
Z(u,v) = ————F——. 14
) = Hfs, o], Ro) (
Z (u,v) is constructed in order for the function to be determined
from the observed images, which serves as the observation when
estimating Ry and R; from the above equation.

A. Gaussian Blur Model

A popular assumption of PSF takes form of a Gaussian func-
tion [9], in which case, we have

1
H(u,v,R) = e$p{—z(u2+1}2)R2}. (15)
Substituting (15) into (14), we can obtain
1
Z(u,v):emp{—z(u2+v2) (R%—R(Z)/sz)}. (16)

Note that (16) holds for all pairs of (u, v). So, an averaged so-
lution [9] is given as follows:

R 1

2
R -3 =-r (17)

—4
Z ml” [Z(u,v)]
(u,w)el;

where I is the region where the summation is well-defined,
which mainly excludes frequencies where the absolute value
of frequency component Y has zeros values or values close to
zero. M is the number of (u, v) pairs in I;. With (12), (13) and
(17), we can solve for Ry and R; uniquely. An approximated
solution can be achieved based on the fact that A ~ f and L >
R, under which (12) can be simplified as
Ry = sRy. (18)
It follows that R? — R3/s?> = R2(s? — 1/s?) = c. Hence, we
have
cs?

Ry = .
0 st —1

This approximation avoids measuring A, L, f and is found to be
accurate enough in experiments.

B. Geometric Blur Model

According to geometric optics, the first order approximation
of the PSF for a circular lens takes the form of a cylindrical
function [11]. In this case, we have

Ji(RVu? + v?)
RVuZ +0?

Adopting the polynomial expansion [27] of a first-order Bessel
function

J( )_ZIJ ICS + $5 1’7 +
W=y "2 T2 2.6 2.42.62.8 '
we have
1 RZ 2 2 R4 2 2\2
H(u,v,R)=2| = — (u +U)+ (u” + v7) -
2 16 384

Equation (14) then becomes

1—R3(u?+0v?)/8+ Ri(u?+v%)%/192...

Z(u,v)=
() = 02) /(350) £ R (w2 07) 2 /(19257) ..
é1+a1(u2+vz)+a2(u2+v2)2+... (20)
where
_ L o
al — 8 (Rl Ro/s )
1 4 44y, B8
(12:19—2(1%1—]20/8)—1—@0,1;... (21)

Denote the number of coefficients tobe NV,ie.,a,,n =1...N
(usually, N = 3 gives enough accuracy). Once we identify a,,
from (20), we can solve for Ry and R, with (12), (13) and (21).
Theoretically, identifying only a; is enough. However, more co-
efficients are desired for a reliable solution. The identification
problem equals solving [a1,as, . ..,an]T from the following
matrix equation:

ud + v3 (u%—l—v%)Q ] Tar

w0} (uf+03)’

Z(U()., ’Uo) -1
Z(U()., ’Ul) -1 =
. an
(22)
Define the vector of LHS as z, the RHS vector a 2
[a1,...an]T. We choose z to contain only nonzero frequency
components and assume it has a dimension of K x 1. We further
define the matrix on the RHS as U, which has size of K x N.
Equation (22) can be written as z = Ua where an least-square
solution of a can be obtained as a = [UTU]_lUTz. Then we

have an over-determined equation array (21) for solving Ry
and R;.

C. Polynomial Blur Model

When we have no prior knowledge about the blur system, it
becomes natural to approximate the OTF using some parametric
functions. In light of the polynomial approximation for first-
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order Bessel function in (20), it is reasonable to assume the two
OTFs take forms of two 2M -order polynomials

M
H(u,v,Rp) =1+ Z b (u? + )"
n=1
M
H(u,v,Ry) =1+ Z cn(u? 4+ v?)™.

n=1

(23)

(24)

In this setting, we write (14) as

Z(u,0) H(u,v, Ry) 1+ M cn(u+02)n
u,v) = =
H(u/s,v/s, Ro) 1+Z£\L[:1 by (u? 4+ v2)n/sm
N
~1+ Z an(u® 4+ v?)"
n=1

where the second line is due to that Z (u, v) can be approximated
by a polynomial as in (20) whose coefficients can be estimated
through (22). The estimation problem collapses to solve for
[b17 b27 . b]\/[]T and [Cl7 Coy. - CIW]T from [al, az, ... aN]T.
We define

Cny--- C]\,I]T

b=[b1/s,...b,/s", .. .bar/sM]T c=[er, ...
a(l)z[al, ey Oy, .7aM]T,a(2) =larrs1,-.-,an]t.

Aslong as N > 2M, a close form solution of b and c is given
by [28]

c= —A_la(2); b=c—Ka
where
apnr (5] 1
ay ...ooa c 1 (0]
A=| "M+ 2 ; K= 1
anN ... Qpr ChM—1 CM—2 ... 1

After identifying b, ¢, we can continue to construct H (u, v, Ro)
and H (u,v, Ry) for image reconstruction purposes. Nonethe-
less, for depth estimation purposes, we need to identify the rela-
tionship between the OTF and the blur radius. According to [12],
based on the relationship between blur radius and the second
moment of defocus operator, OTF has the following general
property regardless of the model used for its representation:

PH@vR)  PHwoR) _ F o
au2 8’02 u=v=0 B 2
which implies

One can verify easily that the Gaussian OTF (15) and Geometric
OTF (19), as special cases, both satisfied this constraint. Based
on (26), we are able to identify Ry and R; from the estimated
b1 and ¢, for further depth estimation.

D. Video Reconstruction and Depth Estimation

Once we get the estimation of blur parameters for each frame,
we can form the OTF for each frame individually. Each de-
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graded frame can be passed through an inverse filter or a Wiener
filter to get a reconstructed frame until the entire focused video
sequence has been recovered.

Given camera physical specifications, the estimation of blur
radius can also be used to obtain depth estimation for objects
in the scene according to (11). In the case of 3-D scene with
multiple objects, we can divide the images into small blocks and
perform the depth estimation for every block to get a depth map
of the scene.

IV. NOISE ANALYSIS

We discuss in this section the robustness of the proposed algo-
rithm with respect to additive noise. We study how the estimate
of OTF in the first frame changes with the disturbance of noise
by introducing the noise N(u,v) as an additive term in the ob-
servation model

Yi(u,v) = H(u,v, R;)Fi(u,v) + N;(u,v); i=0,1. (27)

For simplicity, we use the simplified relationship R = sRy as
in (18). Consider the Gaussian OTF. Substituting (18) into (16)
and combining with (14), we have

Yo (%,%)
With (15) and (28), we notice that noise-free OTF estimation for
first frame can be written as

= exp {—i(u2 +v?)R3(s* — 1)/32} . (28)

Y1 (u, v)|
[Yo(u/s,v/s)|

In the case of additive noise as in (27), the estimation with pres-
ence of noises is given by

52 /(s1-1)
H(u,v,Rg) = [sz }

~ w v _ 82 |Y1(u,v) _Nl(U,’U)|
H(u,v, Ry) [ [Yo(u/s,v/s) — No(u/s,v/s)]

We, thus, note the noisy estimate relates to the noise-free esti-
mate according to the following:

: [|Y1(u,v)| — [N (u,v)]

]s2/<s4—1>

H(u,v,Ry) = H(u,v, Ry)

Y1 (u, v)|
52
u v FEESY
% |Y0 (s7 s) . (29)
Yo (5. 2)] = [No (% %)

Notice that the original additive noise becomes multiplicative
noise in the final estimation. The statistical characteristic of
the noise has changed. If we assume the noises No(u,v) and
Ny (u,v) have Gaussian distributions, then the random variable
inside the square bracket is the ratio of two nonzero-mean
Gaussian random variables. Its distribution has been studied in
[29], based on which we can calculate the distribution and ex-
pectation of the noise. More importantly, by making a realistic
assumption that the ratio between signal and noise is in general
identical for two blurred images, we notice that the term inside
the square bracket has value close to one. This suggests that the
noisy estimate in (29) will be close to noise-free estimate, which
claims the robustness of our algorithm in terms of suppressing
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additive noise. This observation is confirmed by simulated
experiments provided in the later experimental section.

Similar results can be obtained with other OTF models.
Considering Geometric blur model to be a special case of
the polynomial model, we provide briefly the result for
polynomial model with a simplification that the order of poly-
nomial is 2, i.e., M = 1 in (23). Combining (26) we have
H(u,v,R;) =1— R?(u? 4+ v2)/8,i =0, 1. Itis easy to show
that H(u,v, Ry) = H(u,v,sRy) = s>H (u,v, Ry) — s> + 1.
Incorporating (27) and (9), the noisy estimate can be derived
after some algebra

(1—s%)
[ |Y1(u,v) — Ny(u,v)]
[Yo(u/s,v/s) — No(u/s,v/s

while the noise-free estimate is given by

ﬁ(u"/ v, RO) =

-1
2 2
— S —s°+1
)l ]

H(u,v,Ry) = (1 —s*) { [¥i(u, 0)] I —32}_ — 52+ 1.

[Yo(u/s,v/s
The relationship between the two estimates is, thus, given by

H(u,v,Ro) + s2 — 1
H(u,v,Rp) +s%2—1

)
)
[¥i (u, ) ]
S mEIT
11— Ny (u, )/ Vi (u, _32] '
1= No (%,

Again by assuming the ratio of signal and noise remain identical
between two images, we can conclude that the estimate with
noise disturbance is close to the one without noise. These results
may remain valid for higher-order polynomials; however, the
derivation is much more complex.

)| [Ya(u, v)]
2 /Yo (52 (5.9)

V. BLUR ESTIMATION AND VIDEO RECONSTRUCTION
USING MULTIPLE FRAMES

The preceding algorithm description and analysis are pre-
sented in the context of using two images. In case of a video
sequence, three or more frames are easily available. In this sec-
tion, we discuss the possibility of improving the performance
of our algorithm by using multiple frames. We will see that the
whole system including blur estimation and image sequence re-
construction can be naturally extended to accommodate more
than two input images.

A. Blur Estimation Using Multiple Frames

We can extend the blur estimation algorithm presented in Sec-
tion III to incorporate multiple frames in order to improve the
accuracy. Take Gaussian PSF as an example. When we have ad-
jacent or previous (to ensure casualty) I — 1 frames Y;(u,v),
1 =1,...,L—1, we canrewrite (16) and (18) as the following:

/%) }

Zi(u,v) = exp {—i(lﬁ + %) (R}

Ri/Ro = si = /Yo(0,0)/Y:(0,0)

where Z;(u,v) 2 s2(|Y;(u,v)|/|Yo(u/si,v/s;)]). After some
algebra, it can be shown that all the L frames can be incorporated
to form one estimate for blur radius REOZL -1

orL-1 | 1 -4
R, =5 Z e W (u,v)
(u,v)EI>
1 & s
W(u,v) = —— *—In[Z;(u,v)] (30)

where I, are defined as regions where the absolute value of the
frequency spectrum at frequency component Y is sufficiently
large, similar as I in (17). My is the number of (u, v) pairs in
I>. RBO:LA) denotes the estimate using 0 to L — 1 frame. As
we will see in the simulated experiments, the estimation based
on multiple images improves largely the performance of our
algorithm. It may also be useful to consider an updating scheme
which updates previous estimate according to a new input frame.
It can be shown that the estimate using 0 to L — 1 frame and the
estimate using O to L frame have the following relationship:

() =5 () ()

where R((]L) denotes the two-frame estimate using frame L and
frame 0. In other words, with a new input frame, we can per-
form a two-frame estimate and then update the multiple frame
estimate as the weighted sum of previous multiframe estimate
and current two-frame estimate. Similar extensions can be ap-
plied to geometric OTF and polynomial OTF.

B. Video Reconstruction Using Multiple Frames

In the light of multiframe blur estimation idea, it becomes
natural to exploit the effects of additional frames in image re-
construction. We further find that the multiframe image recon-
struction problem under our setting can be reformed as a special
case of a super-resolution problem. Least-square solutions are
available in frequency domain to form better estimates using
multiple observed blurred images.

Denote Frame 0 as current frame to reconstruct and assume
that we have adjacent or previous L — 1 frames. Recall that (6)
and (7) can be rewritten for L frames as

u v
)
Si Si

1
Fi(u7lv) = S_2F0 (SE g) exp {J27T (tzl

Yi(u,v) = F;(u,v)H(u,v,R;), i=0,1,...,L—1.
Together they yield

1
Yi(usi, vs;) = —exp {j2m(tyiu + tyv)}
s

K2

X H(us;,vs;, R;)Fo(u,v). (31)
Again assuming OTFs being real functions, we note Fy(u,v)
has the same phase component as the observed image Yy (u, v).
We need only estimates of the magnitude of Fy(u, v). However,
in the case that OTF contains phase component, we will need
to estimate the translations #,; and ¢,; before we can perform
video reconstruction and in fact even prior to blur estimation.
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‘We will detail this discussion in the next section. Take absolute
values of the both side of (31), we obtain

1
|Yi(usi, vs;)|=—H(usi, vsi, Ri)|Fo(u,v)|, i=1,...
s

i

JL—1.

Given estimates of s; and H(-), we denote Y/(u,v) 2
|Yi(us;,vs;)| and G;(u,v) 2 (1/s2)H (us;, vs;, R;). Thus,
the reconstruction problem becomes solving |Fp(u,v)| from
the following:

Y/ (u,v) = Gi(u,v) |Fo(u,v)], i=1,...,L—-1 (32)
which can be considered as a frequency-domain expression for
a super-resolution problem, except that the degradation G does
not include a down-sampling. A least-square solution can be
formed in frequency domain

A

-1
. G (u. v)Y/ (w.
EFy(u,v)| = Yic1 Gi(u,0)Y (u,v)

St G (u, )

which is equivalent to the spatial domain solution provided in
[30] when the degradation takes form of a circulant matrix in
the spatial domain (here, G* denotes the conjugate of GG). We
see that multiple frames are incorporated into the reconstruction
of a single frame. The solution can be further improved by in-
troducing various regularization terms into the least-square cost
function [30], which is, however, beyond the scope of this paper.

VI. ESTIMATION OF PHASE TRANSFER FUNCTION

Section III presents our algorithm for estimating the OTF
when it has no phase components, i.e., it has only its magnitude
component referred as Magnitude Transfer Function (MTF).
However, the real camera system does introduce a disturbance
on the phase of the original image. Unfortunately, no specific
knowledge on PTF is available in linear optics and it also de-
pends significantly on physical specifications of various lenses,
such as materials, shapes and sizes. Here we provide an ap-
proach for estimating the PTF under our problem setting, which
works without the knowledge of physical characteristics of the
lens.

The discussion will be based on two-frame for simplicity.
Recall from (8) that the two blurred images have the following
relationship in frequency domain:

_ H(U7U7R1) - t_l" t_y
%)~ H(ufs,v/s,Re)" " {"2” (“ s T >}
(33)

[\
=
—
BE
<
~

Let us assume now the OTFs consist of MTFs | H (u, v, R;)| and
PTFs 6;(u,v)

H(u7v7R’i) = |H<u/v7RZ)| erp {J * gz(u/ ?))} t=0,1.

We regard the PTF as a smooth function mainly determined by
the camera system and, thus, consistent within these two frames,
ie., 61 (u,v) = 0o(u,v) = 0(u,v). Therefore, a relationship on
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phases between the two frames can be derived from (33) as the
following:

123 12
LY1(u,v) — LY, (E, g) -2 (u +v—“’>

s s s
=6(u,v) — 0 (g ;) (34)

where /Y;(u,v) denotes the phase of the images in frequency
domain. In the presence of phase component, we need to esti-
mate the translations ¢, and ¢, from the observed image. Mo-
tion estimation techniques proposed in [24], [25] can be imple-
mented on the observed frames to find out the translation pa-
rameters. Note the LHS of (34) then consists of known vari-
ables. Without assuming any specific forms of 6, one idea of
solving the above equation is to use Taylor expansion. We apply
the 2-D Taylor expansion of the first order to 6 (u, v) at the point

(u/s,v/s) to get

o= 2) w2 o2 e (2 2) (-2)

where 0,,(u/s,v/s) denotes the partial derivative of § with re-
spect to u evaluated at the point of (u/s,v/s). Similar interpre-
tation applies to 6,(u/s,v/s). We denote the LHS of (34) as
C(u,v) and substitute (35) to (34) to obtain

U, (U U v, (u v
Ol = (5~ 10 () + (51 %0, (12,
() = (s~ 0%, (4 2) 4 (s - ) g, (21
Denote D(u/s,v/s) = C(u,v)/(s — 1) and perform a
change of variables, {¢ = u/s and n = v/s, we arrive at a

nonlinear partial differential equation (PDE) as follows:

20(&,m) | 00(&m)
e " "an

D(&,n) =¢

A general solution [31] can be obtained as follows:

(6.0 = [ D6+ 000, p=nfe.  (6)
In the above integral, p is considered as a fixed parameter. ® is
an arbitrary function that depends on the boundary condition of
the above PDE. For simplicity, we assume ¢ = 0. In our case,
we have discrete Fourier transforms; thus, (36) is approximately
equivalent to the following discrete form:

¢
0§ n) =) =D(i,in).

1=0

S|

After the summation,we substitute u by p = 1/ to get 0(&, ).
And we can further obtain 6(u, v) by substituting £ = u/s and
n =wv/s. H(u,v, R) can be constructed then by combining the
estimated magnitude component and the phase component.
The multiframe image reconstruction for OTF with
phase components also differs slightly from previous
presentation. From (31), it is necessary to alter the def-
inition of Y’ and G;(u,v) to include phase compo-
nents. Let Y/(u,v) 2 Yi(us;,vs;) and G;(u,v) 2
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Fig. 1. Comparison between the original video sequence (a) BOOK, video
blurred by a synthetic Geometric blur model (b) and the reconstructed first
frame (c) using increasing number of frames. (a) Original video frames: Frame
1, 3, 5, and 7; (b) blurred video frames: Frame 1, 3, 5, and 7; (c) reconstructed
Frame 1 using increasing number of frames.

(1/s?)exp{j2n(triv + tyv)}H(us;,vs;, R;) and then the
same (32) can be arrived.

VII. SIMULATION RESULTS

We test the effectiveness of our algorithm with synthetically
blurred video sequences as well as real blur sequences. For syn-
thetic blur tests, four video sequences are captured by a dig-
ital camcorder. The original sequences are captured in a frame
rate of 10 fps and with a resolution of 320 x 240. The cam-
corder is mounted on a stable platform and its motion is along
the optical axis, i.e., no rotations are presented. The original se-
quences are considered to be blur-free since the digital cam-
corder is set in auto-focus mode. Moreover, in all sequences,
the camcorder moves towards the objects (unless otherwise no-
tified) within a depth range between 500 and 2000 mm so that
the auto-focus function of the camcorder works properly. The
camera moves with a relatively low speed of approximately 30
mm per second so that motion blur has not been introduced.
The groundtruth object depth for the starting frame (maximum
depth) and ending frame (minimum depth) are measured and
the groundtruth for each frame are given by linear interpolation
due to the constant speed. Synthetic blur radii (in pixel unit) are
computed according to the groundtruth depth as in (10) with
f=22mm, A = 22.2 mm and L = 240 pixels.

A. Planar Object and Intensity Images, Synthetic Geometric
Blur

Fig. 1(a) shows the Frames 1, 3, 5, and 7 of the video sequence
BOOK, in which the planar object is a book positioning perpen-
dicular to the camera. Fig. 1(b) shows the sequence blurred by a
simulated Geometric blur as in (19) with blur radius for Frame
1 as Ry = 8 (in pixel). We perform our algorithm with the
Geometric blur assumption [approximate by polynomial N = 3

Blur Radius Estimation vs Groundtruth

1 T T T T T T T T T

Blur Radius R

—True blur radius
-~ ~+5% of true blur radius
- --5% of true blur radius I
—estimated blur radius for each pair
— i i d blur radius
T

5 I L L L L T T T
2 4 6 8 10 12 14 16 18 20

Frame Number

Fig. 2. Comparison of estimated blur radius for Frame 1 in video sequence
BOOK using two-frame (blue line) and multiframe (red line); x-axis represents
the number of frames used for multiframe estimation and the frame index for
two-frame estimation correspondingly. The solid black line represents the true
blur radius for Frame 1 R; = 8, with two dashed black line representing

+£5%R,.

in (20)] and try to estimate the blur radii and reconstruct fo-
cused image. Fig. 1(c) shows a series of reconstructed image
for Frame 1 using increasing number of frames, i.e., the second
image is the reconstruction of Frame 1 computed using Frame
1, Frame 2 (not shown), and Frame 3 in the blurred sequence
(b). We see that the estimation improves with the increment of
number of frames, demonstrating the value of multiple-frame
estimation. The estimated frames become very close to the orig-
inal frames when the number of frames used exceeds 5. This is
further demonstrated in Fig. 2, which shows the blur radius es-
timation versus groundtruth. The solid black line represents the
true blur radius for Frame 1 R; = 8, with two dashed black
line representing +5%R; within which the reconstruction has
reasonable quality. The blue line represents the estimation of
blur radius using two frames: only Frame 1 and the current
frame; while the red line is the result using current frame and
all the previous frames, as in (30). As we can see, although the
two-frame estimations varies from —25% R, to 25% R, among
different frames used, multiple frame estimation gives steady
results within £5% R, after frame number exceeds 6.

B. Approximately Planar Object and Color Images, Synthetic
Gaussian Blur

Fig. 3(a) shows the Frames 1, 101, 161, and 206 of a long
video sequence SOCCER, in which the object soccer is an ap-
proximately planar object. The camera moves from 1300 mm
towards the object and moves backwards after it reaches the dis-
tance of 800 mm. This video sequence consists of color images.
Although previous discussions only consider intensity images,
the whole virtual focusing system can be extended to deal with
color images by simply applying the algorithm to each of the
RGB color components. Fig. 3(b) shows the sequence blurred
by a simulated Gaussian blur as in (15). Fig. 3(c) shows the re-
constructed sequence where 5 frames are used for estimating
each frame. The number of frames used is selected to ensure
that we have sufficient frames, i.e., the resulting reconstruction
quality is stable. As can be seen, the estimation of focused se-
quence gives constantly good performance. We also present the
depth estimation result in Fig. 4. The solid black line represents
the true depth, with two dashed black lines representing +5% of
the truth depth. The blue line represents the estimation of depth
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Fig. 3. Comparison between the original video sequence (a) SOCCER, video
blurred by a synthetic Gaussian blur model (b) and the reconstructed video se-
quence (c) when using 5 frames for estimating each blur radius. (a) Original
video frames: Frames 1, 101, 161, and 206; (b) blurred video frames: Frames 1,
101, 161, and 206; (c) reconstructed video frames: Frames 1, 101, 161, and 206.

Depth Estimation vs Groundtruth
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Fig. 4. Estimated depth (blue line) for video sequence SOCCER comparing to
the groundtruth as well as the estimated depth when the observed images are
contaminated by an additive Gaussian noise (red line); x-axis represents the the
frame index. The solid black line represents the true depth, with two dashed
black lines representing £5% of the groundtruth.

using the proposed blur estimation and resulting depth estima-
tion. We see that the depth estimation is within the +5% of the
groundtruth throughout the whole sequence.

Moreover, we test the robustness of the proposed algorithm
by adding a zero-mean Gaussian noise (standard deviation of
10 pixel values, with all images having 265 graylevels) to the
blurred image sequence. The depth estimation result is illus-
trated as the red line in Fig. 4. We can see that although the
presence of noise has degraded the accuracy of the estimation,
depth estimates with this moderately large noise still lie within
the +5% of the groundtruth. We conclude that the proposed al-
gorithm has plausible robustness with respect to additive noise
as we have shown theoretically in Section I'V.

C. Three-Dimensional Scene and Color Images, Synthetic
Gaussian Blur

Fig. 5(a) shows the Frames 31, 61, 91, and 121 of a color
video sequence DESK, where multiple objects form a back-

Fig. 5. Comparison between the original video sequence (a) DESK, video
blurred by a synthetic Gaussian blur model (b) and the reconstructed video
sequence (c) when using 10 frames for estimating each blur radius. (a) Original
video frames: Frames 31, 61, 91, and 121; (b) blurred video frames: Frames 31,
61,91, and 121; (c) reconstructed video frames: Frames 31, 61, 91, and 121.

Blur Radius Estimation vs Groundtruth

8 T T T T T T
—— True blur radius for background
—e—true blur radius for foreground
7 || —— estimated blur radius for background b
—— estimated blur radius for foreground
(]
S al .
5 6
©
14
55 i
[11]
4 //// 1
3 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Frame Number

Fig. 6. Estimated blur radius for background (blue line) and foreground (red
line) in video sequence DESK comparing to groundtruths (black lines).

ground-foreground scene. Gaussian synthetic blurs are added
according to the depths of the objects as shown in Fig. 5(b). As
mentioned in Section III, our algorithm can be applied to local
regions of the image to ensure each region has the same depth.
In arather simple case as in DESK, we can divide the frames into
background regions and foreground regions. Fig. 5(c) shows the
reconstructed sequence where we use 10 frames for estimating
each frame. It can be seen that our algorithm gives high-quality
reconstruction for both the foreground objects and the back-
ground. Fig. 6 is a plot with the groundtruth blur radius for
both the background (solid black line) and foreground (black
line with dots). The simulated blur increases when the depth
decreases. The blue line and the red line represent the blur es-
timation for background and foreground respectively. They are
both close to the groundtruth, which verifies the competence of
our algorithm in dealing with 3-D scenes.

D. Reconstruction With PTF Estimation, Synthetic Blur

We test our PTF estimation with a sequence ALARM as shown
in Fig. 7; (a) shows the first frame and (b) shows the blurred first
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(@ ©
Fig. 7. Comparison of focused image reconstruction methods for video
ALARM: (a) original image; (b) blurred image, PSNR = 18.47 dB; (c)
focused image reconstruction using restoration from magnitude (RFM),
PSNR = 15.62 dB; (d) focused image reconstruction using blur function
magnitude estimation, PSNR = 18.99 dB; and (e) focused image reconstruc-
tion using blur function magnitude and phase estimation, PSNR = 21.65 dB.

frame as a result of an synthetic OTF consisting of a Gaussian
MTF and an arbitrary PTF. Fig. 7(c) shows the reconstruction
result using Restoration from Magnitude (RFM) in [19]. It is a
technique based on projection onto convex set (POCS) while the
two convex sets are the set of space-limited functions and the set
of all functions that have a Fourier transform magnitude equal
to a prescribed function. Fig. 7(d) shows the reconstruction re-
sult using only proposed OTF magnitude estimation and PTF
is considered to be zero. Fig. 7(e) shows the reconstruction re-
sult using both proposed OTF magnitude estimation and phase
estimation. It can be seen that the restoration including PTF es-
timation performs better than the restoration without phase and
restoration using RFM, which verifies the effectiveness of our
PTF estimation algorithm. It is more explicitly demonstrated
through PSNR improvements. The blurred image has a PSNR
of 18.47 dB while the reconstruction using RFM has a PSNR of
15.62 dB. The reconstruction using proposed magnitude-only
OTF estimation gives a slightly improved PSNR of 18.99 dB.
The reconstruction using both magnitude and phase estimation
gives the highest PSNR of 21.65 dB, which is an over 3-dB im-
provement comparing to the blurred image.

E. Real Blurred Sequence

We also test our algorithm with real blur image sequences.
The sequences are captured by a web camera whose lens can be
manually preadjusted, but will remain fixed during the whole
capturing process. We set the lens in an out-of-focus position
for a certain object in a certain depth, and take videos while
moving the camera. The physical parameters f and A are not
available after adjustments; thus, the simplified camera geom-
etry (18) will be used. The sequences are captured in a frame
rate of 10 fps and with a resolution of 320 x 240.

Fig. 8(a) shows the Frames 20, 30, 40, and 50 of a B/W
video sequence SPIRAL, in which the object is a cover picture
of a book and placed perpendicular to the camera. The webcam
moves manually towards the object, similar as in the synthetic
cases except that the captured sequence contains small transla-
tions attributed to an unsteady hand during video capture. The
distance between the camera and the object is ranging from 50
mm to 100 mm. We preset the lens to focus in near distance,
i.e., small depth. Thus, when the camera moves forward, the
captured video frames observes less blur effects. The whole
video consists of 60 frames. Fig. 8(c)—(e) shows corresponding
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Fig. 8. Reconstruction for a real blur video SPIRAL using multiframe blur esti-
mation and multiframe image reconstruction: (a) Original video frames: Frames
20, 30, 40, and 50; (b) Gaussian blur model reconstruction without phase esti-
mation; (c) Gaussian blur model reconstruction with phase estimation; (d) geo-
metric blur model reconstruction with phase; (e) polynomial blur model recon-
struction with phase; (f) enlarged rectangles. From left to right: Original Frame
20; reconstructed Frame 20 using polynomial model; original Frame 40 and re-
constructed Frame 40 using polynomial model.

reconstructed frames using the proposed multiframe blur es-
timation and multiframe image reconstruction. Five immedi-
ately preceding frames are used for reconstructing each frame.
Motion estimation has been employed to find out the transla-
tional parameters required for PTF estimation. Since the form
of the blur function is unknown, we provide reconstruction re-
sults based on the three different models for the magnitude com-
ponent: Gaussian blur model [Fig. 8(c)], Geometric blur model
[Fig. 8(d)] and the general polynomial model [Fig. 8(e)]. PTF
estimation does not assume an OTF model and is, thus, iden-
tical for all three OTF models considered. We also provide in
Fig. 8(b) the result of magnitude-only reconstruction based on
Gaussian blur model, for comparison. We note that the phase
disturbance is relatively small in this experiment, and, thus, the
improvement in the results using PTF is only slightly superior
to the results obtained without PTF estimation.

It can be seen from the results the reconstruction improves
the quality of the blur sequence with sharper edges and more
details. Fig. 8(f) shows the enlarged portions indicated as rec-
tangle areas in the original frames, for clearer comparisons. All
of three OTF models yield similar performance with the poly-
nomial model being slightly better. Especially for Frame 20 and
30, polynomial model gives sharper edges. However, in the case
that computational cost is a crucial constraint, the Gaussian OTF



is a more desirable model since its computational complexity is
much lower than the polynomial model. When implemented in
MATLAB on a PC with a single 3.2 GHz CPU, the five-frame
blur estimation with Gaussian OTF assumption requires only
0.6 seconds while the Geometric model consumes 19 seconds
and the polynomial model consumes 31 s. Since all the video
sequences in our experiments have the same resolution, iden-
tical computational speeds are observed with videos discussed
previously.

VIII. CONCLUSION

In this paper, we introduced a novel method for virtual
focus and object depth estimation from defocused videos. The
proposed algorithm exploits differences in the blur character-
istics of adjacent video frames captured by an out-of-focus
moving camera. Multiple frames are used to further improve
the system’s performance. We explored several blur models
which can be used to recover arbitrary transfer functions.
Analysis of the effect of noise on the proposed approach to
blur estimation indicates that the algorithm performs robustly
with the disturbance of noise. Computer simulated experiments
confirm the merit of our approach to virtual focus estimation.

The main advantage of the proposed algorithm is that it works
with a rigid lens system, while existing methods require a so-
phisticated apparatus for lens adjustment. It, therefore, has the
potential to be deployed in cell-phone and web cameras, where
the lens systems are often inexpensive and do not have a mecha-
nism to adjust the position of the lens for auto-focus capability.
Furthermore, the proposed algorithm can also be used as a post-
processing technique to correct video sequences which suffer
from out-of-focus blur.

We have shown in Section II that an arbitrary 3-D affine mo-
tion can be approximated by a 2-D affine motion. More complex
motions can be modelled fairly accurately as affine motions on
local image patches. Moreover, in the case that the 2-D affine
motion contains rotation, we rely on motion compensation to
correct the rotation. Therefore, with the aid of an image regis-
tration preprocessing module, the algorithm developed can deal
with common motions used to model video capture in mobile
cameras. Following a similar argument to [7], our estimation
technique can rely on image patches containing isolated objects;
thus possible object self-occlusions in the video will only intro-
duce limited, local degradation in the system’s performance.
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