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ABSTRACT

In this paper, we investigate the use of the non-local means (NLM) denoising approach in the context of image
deblurring and restoration. We propose a novel deblurring approach that utilizes a non-local regularization
constraint. Our interest in the NLM principle is its potential to suppress noise while effectively preserving edges
and other texture detail. Our approach leads to an iterative cost function minimization algorithm, similar to
common deblurring methods, but incorporating update terms due to the non-local regularization constraint. The
data-adaptive noise suppression weights in the regularization term are updated and improved at each iteration,
based on the partially denoised and deblurred result. We compare our proposed algorithm to conventional de-
blurring methods, including deblurring with total variation (TV) regularization. We also compare our algorithm
to combinations of the NLM-based filter followed by conventional deblurring methods. Our initial experimental
results demonstrate that the use of NLM-based filtering and regularization seems beneficial in the context of
image deblurring, reducing the risk of over-smoothing or suppression of texture detail, while suppressing noise.
Furthermore, the proposed deblurring algorithm with non-local regularization outperforms other methods, such
as deblurring with TV regularization or separate NLM-based denoising followed by deblurring.
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1. INTRODUCTION

In this paper, we propose an image deblurring and denoising algorithm using a non-local regularization con-
straint. We compare the proposed iterative reconstruction algorithm with algorithms using a total variation
(TV) regularization constraint, and with algorithms consisting of separate denoising and deblurring.

We consider images that are degraded by blur and noise inherent in the image capturing process. Blurring
involves suppression of high-frequency detail in the image and may be due to the camera optics and imaging
sensor, as well as other factors. Random noise may be caused by the sensor (e.g. photon noise), by the electronics,
by analog-to-digital conversion, and other factors. We consider the following observation model for the degraded
image data y: y = H x + v, where x is the “ideal” image, H is the combined lens and sensor blur p.s.f. and v

is additive noise. Our goal is to estimate x, given y and assuming we approximately know H. Hence, we aim
to reduce the blur and noise in y, while avoiding introduction of artifacts or further loss of detail. A common
image restoration approach1,2 is to minimize a cost function such as:

Φ(x) = ‖y−Hx‖2 + λ C(x). (1)

The first term in Φ(x) ensures fidelity of the estimate to the data y. The second term is a regularizing or
stabilizing constraint C(x), which may exploit prior knowledge of the underlying image and can be used to avoid
noise amplification during deblurring. A regularization parameter λ controls the trade-off between the two terms.

A common regularization constraint takes the form C(x) = ‖Lx‖2, combining a linear high-pass filter L

with the L2 norm. This approach enforces smoothness of the solution and suppresses noise by penalizing high-
frequency components. More recently, regularization based on the total variation (TV) norm has been introduced.
Total variation minimization was originally introduced for noise reduction3,4 and has also been used for image
deblurring5 and super-resolution image reconstruction.6 The TV constraint is computed as the L1 norm of the
gradient magnitude: C(x) = ‖∇x‖1. TV minimization is better able to preserve sharp edges and fine detail



in the image. Both approaches lead to regularization constraints defined in terms of pixel values in a local
neighborhood, and have the potential for oversmoothing and re-introducing some blur.

A wide range of image denoising methods has been proposed in the past that could be applied in a separate
noise suppression stage before or after deblurring, to alleviate the concerns of noise amplification. The non-local
means (NLM) filter7 is a recent approach, that is able to remove additive noise while preserving sharp edges
and fine texture details. The NLM filter, described in the next section, has been shown to perform very well,
especially on textured images. An iterative version of the NLM filter has been proposed in Ref. 8. A very general
framework that includes local and non-local regularization as well as the NLM filter as special cases has been
proposed in Ref. 9. However, the NLM approach has sofar been applied to image denoising only.

We propose to use the NLM principle in the form of a regularization constraint in image deblurring. The NLM-
based regularization constraint has the potential to suppress noise while preserving edges and other detail, more
effectively than conventional regularization constraints. Compared to a scheme with a denoising stage separate
from deblurring, this method has the advantage of lower computational cost, as well as better performance.

This paper is organized as follows. In Section 2, we briefly review existing deblurring methods, and describe
NLM-based denoising in more detail. These deblurring and denoising methods will be used in experimental
comparisons with our proposed method. In Section 3, we introduce the proposed deblurring method with non-
local regularization. In Section 4, we provide experimental results.

2. DEBLURRING AND NLM-BASED DENOISING

2.1 Iterative Regularized Deblurring

Common iterative minimization methods1,2 can be employed to compute estimates of x based on Eq. 1. In
the steepest descent approach, the estimate x̂

k at the kth iteration is updated in the (opposite) direction of the
gradient of the cost function.

Without the regularization constraint C(x), the estimate of x is the unconstrained least-squares (LS) solution.
Iterative minimization based on the gradient descent approach is as follows:

x̂
k+1 = x̂

k − β [HT (H x̂
k − y)], (2)

where β is the step-size and x̂
0 = y. In our experiments, β is held constant. At the cost of additional computation,

an optimal value of β can be computed at each iteration. The method of conjugate gradients and other more
advanced minimization methods can be used alternatively.

An iterative scheme for deblurring with TV regularization can be defined as follows:

x̂k+1(i, j) = x̂k(i, j)− β [H(−i,−j) ∗ (H(i, j) ∗ x̂k(i, j)− y(i, j))]

− 0.5 β λ [
∑

l,m∈S

αi,j,l,m(x̂k) (x̂k(i, j)− x̂k(i+ l, j +m))], (3)

where x̂k(i, j) is the estimate at a pixel location (i, j) at iteration k, and S = {(1, 0), (0, 1), (−1, 0), (0,−1)} is a
local neighborhood. The αi,j,l,m values can be seen as data-adaptive weights for the local neighbors in S, and
are given by:

αi,j,l,m(x) =
1

Di,j(x)
+

1

Dl,m(x)
. (4)

Here, Di,j is the so-called local variation at pixel (i, j) and is given by:

Di,j(x) ≡

√

∑

r,s∈S

[x(i, j)− x(i+ r, j + s)]2 + ǫ. (5)

This approach is based on a discrete version of the TV constraint4 defined by C(x) =
∑

i,j Di,j(x). The above
iteration is a so-called fixed-point iteration scheme, where computation of the TV term lags one iteration behind,
i.e. the weights αi,j,l,m are computed on the basis of the previous estimate x̂k and are updated after each iteration.



2.2 Denoising with Non-Local Means Filter and Iterative Non-Local Means

The discrete NLM filter7 is a form of weighted averaging over a set N of non-local neighbor pixels, which may
include pixels from a large window or even the entire image. The nth neighboring pixel is offset from the center
pixel vertically by Ln pixels and horizontally by Mn pixels in the image. The NLM filter is then given by:

x̂(i, j) =
1

∑

n∈N
wi,j,n(y)

∑

n∈N

wi,j,n(y) y(i+ Ln, j +Mn). (6)

The process includes the definition of a patch of pixels centered on the pixel of interest at (i, j). This patch
of pixels is compared to other patches centered on the neighboring pixels used for averaging. The size of each
patch is (2A + 1) × (2B + 1) pixels. The data-adaptive denoising weight for the nth neighbor of pixel (i, j) is
then defined by:

wi,j,n(y) = exp{−
1

h2

A
∑

u=−A

B
∑

v=−B

g(u, v) [y(i+ u, j + v)− y(i+ u+ Ln, j + v +Mn)]
2}, (7)

where h is a given parameter that controls the denoising strength. The larger the value of h the higher the
strength of denoising. Each weight wi,j,n is based on the pixel differences between the center patch and a
neighboring patch, weighted by a (Gaussian) kernel g(u, v). Note that the denoising weights are computed from
the noisy image y.

The basic NLM filter can be extended by applying it in an iterative manner (as also proposed in Ref. 8):

x̂k+1(i, j) = x̂k(i, j)− β[x̂k(i, j)−
1

∑

n wi,j,n(x̂
k)

∑

n

wi,j,n(x̂
k) y(i+ Ln, j +Mn)], (8)

with x̂
0 = y. Note that the denoising weights wi,j,n(x̂) are defined similarly as in Eq. 7, except that they are

computed on the previous solution at iteration k, i.e. the (partially) denoised image x̂
k. Hence, the denoising

weights are continuously improved as the iterative scheme progresses. At the same time, the noisy input image
y is always used as the data for the actual denoising step in each iteration.

We can derive the above iterative denoising scheme indirectly by introducing a cost function that is subse-
quently minimized with a gradient descent method. We define our cost function as follows:

Γ(x̂) =
∑

i,j

[x̂(i, j)−
1

∑

n∈N
wi,j,n(x̂)

∑

n∈N

wi,j,n(x̂)y(i+ Ln, j +Mn)]
2, (9)

with denoising weights wi,j,n(x̂) defined as before. Taking the gradient of Γ(x̂) with respect to x̂ and subsequent
derivation (involving an approximation step) results in the gradient descent scheme defined in Eq. 8.

3. DEBLURRING AND DENOISING WITH NON-LOCAL REGULARIZATION

In this section, we present a regularization constraint based on the Non-Local Means principle and propose a novel
deblurring and denoising scheme using NLM-based regularization. We start by formulating our regularization
constraint as follows:

C(x) =
∑

i,j

[x(i, j)−
1

∑

n∈N
wi,j,n(x)

∑

n∈N

wi,j,n(x) x(i+ Ln, j +Mn)]
2. (10)

The denoising weights wi,j,n(x) are defined as in Eq. 7, except they are defined on the deblurred and denoised
solution image. Comparing Eq. 9 with Eq. 10, it is important to note that the previous cost function involved
the observation y. This coupling with the observation data was important to prevent iteratively smoothing out
all detail of the image (as pointed out in Ref. 8). In the formulation in this section, coupling with the observation
data is instead enforced by the data fidelity term in Eq. 10.



Using a gradient descent approach, we arrive at the following iterative minimization scheme:

x̂k+1(i, j) = x̂k(i, j)− β[H(−i,−j) ∗ (H(i, j) ∗ x̂k(i, j)− y(i, j))]

− βλ[x̂k(i, j)−
1

∑

n wi,j,n(x̂
k)

∑

n

wi,j,n(x̂
k) x̂k(i+ Ln, j +Mn)]. (11)

Note that the denoising weights are computed on the (partially) denoised and deblurred image at the previous
iteration x̂

k. Hence, the weights are continuously improved as the iterative scheme progresses. Also, x̂k is now
used as the data for the denoising step in each iteration, unlike Eq. 8. This is because we must compute an
estimate of the denoised and deblurred image. The data fidelity term of the cost function and proposed algorithm
will ensure consistency with the input image data y, as mentioned above. As in the previous section, derivation
of this iterative scheme requires an approximation in which specific terms are neglected.

4. EXPERIMENTAL RESULTS

We experimentally compared the following deblurring algorithms:

1. Unconstrained least-squares deblurring method (LS), see Eq. 2;

2. Basic NLM filter followed by LS deblurring (NLM+LS), see Eq. 6 and Eq. 2;

3. Iterative NLM denoising followed by LS deblurring (INLM+LS), see Eq. 8 and Eq. 2;

4. Deblurring with total variation regularization (CTV), see Eq. 3;

5. Proposed deblurring with non-local regularization (CNL), see Eq. 11.

The test images we used in our experiments are shown in Fig. 1. The first two images in our test set are
the well-known “Barbara” and “Lena” images. The next three images (“Canvas”, “Carpet” and “Wallpaper”)
are texture images from the Outex Texture Database.10 The last image (“Panel”) is an image obtained by
high-resolution imaging of an LCD panel.

A series of experiments was performed, in which we changed the strength of the blur and noise in the degraded
images. In all our experiments, we generated simulated degraded images from the original images by blurring
with a Gaussian kernel followed by adding white Gaussian noise. We used the following settings:

• Experiment 1: Gaussian blur with σ = 1.5 and noise standard deviation 7.

• Experiment 2: Gaussian blur with σ = 1.5 and noise standard deviation 15.

• Experiment 3: Gaussian blur with σ = 2.0 and noise standard deviation 10.

The CTV and CNL methods were always applied for 50 iterations. All methods involving unconstrained
deblurring, i.e. LS, NLM+LS and INLM+LS, were applied for 10 iterations only. Generally, the LS method
is sensitive to noise, and a high number of iterations leads to unacceptable noise amplification. In all deblurring
iterations, we set β = 0.5.

We used the following fixed parameter settings for methods involving NLM filtering or non-local regularization.
We use a 21 × 21 pixel search window, i.e. offsets Ln and Mn range between −10 and 10, resulting in a total
of 441 neighbors. In NLM, we used patches of 11 × 11 pixels (i.e. A = B = 5); in INLM and CNL, we
used patches of 9 × 9 pixels (i.e. A = B = 4). The iterative NLM denoising method (INLM) is applied for 10
iterations, with β = 0.2.

The parameter that controls denoising strength in NLM and non-local regularization methods, h, was opti-
mized in each experiment to obtain the best PSNR. The regularization parameter in CTV and CNL, λ, was
also optimized in each experiment to obtain the best PSNR. The optimized parameter settings in experiment 1,
2 and 3 are provided in Table 1, 2 and 3.

The PSNR results for experiments 1, 2 and 3 are provided in Table 4, 5 and 6, the best results indicated in
bold. These tables show that the proposed method outperformed other methods in terms of PSNR in all cases.
The LS method provides deblurring, but no noise control. In the high noise case (experiment 2), the PSNR



deteriorates in several cases. In all cases, deblurring with total variation regularization (CTV) outperforms LS,
the margin being the largest, almost 6 dB, in experiment 2 (high noise condition). Methods NLM+LS and
INLM+LS have similar PSNR results to each other. Both outperform CTV in most cases, with a margin up to
about 1.5 dB. Using NLM-based denoising prior to LS deblurring provides a PSNR increase of up to 7 dB. The
proposed deblurring method with non-local regularization (CNL) achieves the best PSNR. CNL outperforms
CTV, by up to approximately 2.6 dB in experiment 1. CNL outperforms the combinations methods NLM+LS

and INLM+LS by a smaller margin, up to about 1 dB in experiment 2.

A subset of the image results of experiment 2 are provided in Fig. 2, Fig. 3 and Fig. 4. The images show a
cropped area to improve visibility. These images illustrate the noise amplification of the LS deblurring method.
The figures show the result of denoising by NLM prior to deblurring, as well as the result of the combination
of NLM and LS deblurring. Finally, the results of deblurring with total variation regularization and non-local
regularization are shown. NLM filtering seems to provide strong noise reduction, but suffers from loss of edge
and texture detail. Total variation regularization preserves more detail; however, it suffers from the well-known
“staircase” effect, in that the resulting images appear to contain piecewise constant “patches”. It appears that
non-local regularization may provide a better balance between noise reduction and detail preservation.

In a final experiment (Experiment 4), we investigated reducing the computational complexity of the NLM-
based methods and CNL. In this experiment, we consider application of these methods to image data with highly
regular texture patterns, such as the “Panel” image. This type of texture image contains a pattern that repeats
periodically in the horizontal and vertical direction. We assumed prior knowledge of the horizontal period lx and
vertical period ly, e.g. lx = ly = 12 in the “Panel” image. We restricted the NLM-based methods, including the
proposed CNL method, to utilize a very small set of 8 non-local neighbors in addition to the center pixel. This
small set is defined by:

(Mn, Ln) ∈ {(−lx,−ly), (0,−ly), (lx,−ly), (−lx, 0), (0, 0), (lx, 0), (−lx, ly), (0, ly), (lx, ly)}.

We applied a Gaussian blur with σ = 1.5 to the image and added white Gaussian noise with standard
deviation TBD. In this test, iterative deblurring methods were all applied for 100 iterations with β = 0.5. In
CTV, we used λ = 0.1, while in CNL, we used λ = 0.3. In all NLM-based methods, we used a patch-size of
5x5 pixels (i.e. A = B = 2). INLM was applied for 20 iterations with β = 0.2. In NLM+LS, INLM+LS and
CNL, we used h = 25, h = 18 and h = 25 respectively.

The PSNR results are listed in Table 7 and selected visual results are shown in Fig. 5. These results again
indicate that NLM-based denoising prior to deblurring can be beneficial. Iterative NLM-based denoising improves
performance further. The proposed deblurring method with non-local regularization (CNL) again performs best.

This experiment suggests that, in certain applications, the computational cost of NLM filtering or non-local
regularization can be reduced, while retaining good performance.

5. CONCLUSIONS

We have investigated the use of the non-local means (NLM) denoising approach in the context of image de-
blurring. We have proposed a novel deblurring approach that utilizes a non-local regularization constraint. We
compared our proposed algorithm to conventional deblurring methods, including total variation (TV) regular-
ization. We also compared our algorithm to combinations of the NLM-based filter followed by conventional
deblurring methods. The use of NLM-based filtering and regularization seems beneficial in the context of de-
blurring, providing improved noise suppression, while reducing the risk of oversmoothing or detail suppression.
Furthermore, in our experiments, the proposed deblurring algorithm with non-local regularization outperformed
other methods, including TV regularization, in terms of PSNR.
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Table 1. Parameter settings for experiment 1 (blur σ = 1.5 and noise st.dev. = 7).

Image NLM+LS INLM+LS CTV CNL

Barbara h = 60 h = 50 λ = 1.0 h = 60, λ = 0.3
Lena h = 60 h = 50 λ = 1.0 h = 80, λ = 0.3

Wallpaper h = 60 h = 60 λ = 1.0 h = 70, λ = 0.3
Canvas h = 60 h = 50 λ = 1.0 h = 60, λ = 0.3
Carpet h = 80 h = 70 λ = 1.0 h = 80, λ = 0.5

Table 2. Parameter settings for experiment 2 (blur σ = 1.5 and noise st.dev. = 15).

Image NLM+LS INLM+LS CTV CNL

Barbara h = 150 h = 100 λ = 3.0 h = 100, λ = 0.5
Lena h = 150 h = 100 λ = 3.0 h = 120, λ = 0.5

Wallpaper h = 120 h = 100 λ = 3.0 h = 110, λ = 0.3
Canvas h = 110 h = 90 λ = 3.0 h = 120, λ = 0.3
Carpet h = 140 h = 120 λ = 3.0 h = 140, λ = 0.5

Table 3. Parameter settings for experiment 3 (blur σ = 2.0 and noise st.dev. = 10).

Image NLM+LS INLM+LS CTV CNL

Barbara h = 110 h = 70 λ = 2.0 h = 80, λ = 0.5
Lena h = 110 h = 70 λ = 2.0 h = 100, λ = 0.5

Wallpaper h = 100 h = 70 λ = 2.0 h = 80, λ = 0.3
Canvas h = 90 h = 60 λ = 2.0 h = 90, λ = 0.3
Carpet h = 110 h = 80 λ = 2.0 h = 100, λ = 0.5



Table 4. PSNR results for experiment 1 (blur σ = 1.5 and noise st.dev. = 7).

Image Degraded LS NLM+LS INLM+LS CTV CNL

Barbara 23.05 23.28 24.03 24.13 23.82 24.30

Lena 26.93 27.35 30.19 30.76 29.67 31.79

Wallpaper 25.07 27.29 29.00 29.09 27.51 30.12

Canvas 26.86 27.75 30.00 29.85 29.44 30.60

Carpet 20.34 24.07 24.35 24.31 24.17 24.70

Table 5. PSNR results for experiment 2 (blur σ = 1.5 and noise st.dev. = 15).

Image Degraded LS NLM+LS INLM+LS CTV CNL

Barbara 21.17 20.29 23.65 23.64 23.15 23.88

Lena 23.27 21.88 28.96 28.85 27.58 29.86

Wallpaper 22.36 21.86 26.39 26.56 25.66 27.49

Canvas 23.24 21.98 26.90 26.80 27.27 28.34

Carpet 19.23 20.89 22.47 22.47 22.45 22.86

Table 6. PSNR results for experiment 3 (blur σ = 2.0 and noise st.dev. = 10).

Image Degraded LS NLM+LS INLM+LS CTV CNL

Barbara 21.90 22.13 23.59 23.56 23.16 23.75

Lena 24.66 25.11 28.93 28.84 27.76 29.39

Wallpaper 22.49 24.46 26.26 26.18 24.78 26.62

Canvas 24.34 25.05 27.26 27.10 27.03 27.66

Carpet 17.93 21.09 21.42 21.42 21.33 22.06

Table 7. PSNR results for experiment 4.

Image Degraded LS NLM+LS INLM+LS CTV CNL

Panel 21.33 22.41 24.10 24.55 22.96 25.03



(a) (b)

(c) (d)

(e) (f)

Figure 1. Original images: a) Barbara; b) Lena; c) Canvas; d) Carpet; e) Wallpaper; f) Panel. The size of the “Panel”
image is 240x240 pixels; the size of all other images is 512x512.



(a) (b) (c)

(d) (e) (f)

Figure 2. “Lena” image results for experiment 2 (256x256 pixels crop): a) blurry and noisy input; b) LS; c) NLM; d)
NLM+LS; e) CTV; f) CNL.



(a) (b) (c)

(d) (e) (f)

Figure 3. “Canvas” image results for experiment 2 (256x256 pixels crop): a) blurry and noisy input; b) LS; c) NLM; d)
NLM+LS; e) CTV; f) CNL.



(a) (b) (c)

(d) (e) (f)

Figure 4. “Carpet” image results for experiment 2 (256x256 pixels crop): a) blurry and noisy input; b) LS; c) NLM; d)
NLM+LS; e) CTV; f) CNL.

(a) (b) (c) (d)

Figure 5. “Panel” image results (120x120 pixels crop): a) blurry and noisy input; b) CTV (22.96 dB); c) NLM+LS (24.10
dB); d) CNL (25.03 dB).


