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ABSTRACT

In this paper, we present new results in performance analy-
sis of super-resolution (SR) image reconstruction. We inves-
tigate bounds on the improvement in resolution that can be
achieved and its relation to the image sequence. We derive
lower bounds on the resolution enhancement factor based on
a frequency-domain SR algorithm. We subsequently show
that the bounds remain valid for other SR algorithms. More-
over, we consider an image sequence model in the presence of
affine motion. We demonstrate theoretically and experimen-
tally that incorporation of affine motion into the image model
can be used to increase the enhancement factor in comparison
to purely translational motion. Finally, we discuss the exten-
sion of the performance bounds to temporal super-resolution
methods and its implications on the image sequence.

1. INTRODUCTION

Super-Resolution (SR) in general refers to algorithms of pro-
cessing multiple low-resolution (LR) images to reconstruct
a high-resolution (HR) image. Super-Resolution algorithms
can be divided into two main categories: spatial-domain meth-
ods [3] and frequency-domain methods [1]. Spatial-domain
methods regard the LR images to be formed by applying a se-
ries of linear degradations to the original HR image. Frequency-
domain methods introduced in [1] are considered to be one of
the pioneering work in the content of SR. It justifies theoret-
ically that super-resolution can be achieved by taking advan-
tage of aliasing effects in the frequency domain. The limita-
tion of the algorithm is it only considers frames with relative
shifts, i.e., only translational motion. Among numerous SR
theories and algorithms proposed, there are not many results
concerning the performance limits of the SR problem. Au-
thors in [4] state that when the magnification factor increases,
the difficulty of SR reconstruction increases dramatically. In
[5] authors discuss the statistical performance of SR algo-
rithm using Cramer-Rao (CR) bounds. The results takes into
account image registration and restoration simultaneously.

In this paper, we try to answer a rather direct question:
given a sequence of images, how much resolution improve-

ment can at least be achieved and how is it related to the
specifications of the sequence? We start with the frequency-
domain method proposed in [1] and extend it from consid-
ering only translational motions to accommodating general
2D affine motions. In the meanwhile, we identify conditions
posed during the derivation of the proposed algorithm which
can further translate to achievable bounds of the enhancement
factors. We show that adding image frames with affine mo-
tions gives a new achievable bound for the enhancement fac-
tors. Under the framework, we study the factors affecting the
reconstruction errors. In addition, we generalize the SR prob-
lem to include SR in temporal domain. The formulation will
be especially useful for videos. The conditions on perform-
ing temporal SR is also discussed. Several experimental re-
sults are provided which confirm our proposition. It will also
be shown with experiments that our results derived based on
a particular frequency-domain method can also be observed
when using other spatial-domain methods.

2. PERFORMANCE ANALYSIS OF
SUPER-RESOLUTION WITH AFFINE MOTION

2.1. Theoretical Foundations of Frequency-Domain Anal-
ysis of Super-Resolution

We begin by assuming a moving camera is looking at a static
scene and taking a video of it. We model the scene as a con-
tinuous function f(x, y). In time t0 and time t = tk, the
camera takes two images, frame 0 (f (0)) and frame k (f (k)),
k = 1...P − 1. P is the number of frames that the camera
takes. In the camera’s coordinate system, the scene is mov-
ing due to the motion of the camera. Denote f0(x, y) as the
scene in t0 and fk(x, y) in time tk. Assuming the camera has
a sampling period T and a sampling rate ws = 2π/T , we
have f (k)(i, j) = fk(iT, jT ), k = 0, 1...P − 1. We denote
two Fourier Transform pairs: Continuous Fourier Transform
(CFT) of fk(x, y) as Fk(w1, w2) and the Discrete Fourier
Transform (DFT) of f (k)(i, j) as F (k)(m, n), k = 0, 1...P −
1. w1, w2 are frequency indices and m = 1...M, n = 1...N .
M × N is the size of the image. The problem of super-
resolution in frequency domain is given DFT of all the P



frames to recovery as many samples of the original Fourier
Transform F0(w1, w2) as possible so that they can be used
to provide highly resolved image. When the sample numbers
are larger than that of F (k)(m, n), we achieve a resolution
magnification of the image.

It is well known that DTFT for a sampled signal is the su-
perposition of shifted replicas of CFT of original continuous
signals, and DFT is a sampled version of DTFT. It is easy to
verify the following relationship between DFT and CFT [1]:
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where m = 1, ...M, n = 1, ...N , r, s are integers. To obtain
relationships between F (k)(m, n) and F0(w1, w2), we need
to relate Fk(w1, w2) with F0(w1, w2), which can be obtained
based on the motion transformations between the frames.

2.2. Frequency-Domain Analysis of Super-Resolution with
Affine Motion

Instead of considering only translational motion as in [1], we
assume the camera undergoes affine motions during the ac-
quisition process. A point Z’s coordinate in time t0 (x0, y0)
and in time tk (xk , yk) are related by 2D affine transforms:
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where ak, bk, dk, ek are linear transformation parameters re-
lating to camera rotation and scaling. ck, fk are camera trans-
lation parameters. According to the affine theorem for 2D
Fourier transform [2], we have the following relationship:
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where ∆k ≡ akek−bkdk. We first normalize the linear trans-
formation parameters to simplify notations by replacing ak

with ak/∆k and likewise for bk, ek and dk. It can be shown
after combining (3) with (1) and some additional algebra that
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To further proceed, we define the mappings (m′, n′) = gk(m, n)
and (r′, s′) = hk(r, s) as follows:

m′ = ekm − dknM/N and n′ = akn − bkmN/M ;

r′ = ekr − dks and s′ = aks − bkr. (5)

Along with ws = 2π/T , Eq. (4) is simplified as
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where g−1
k denotes the inverse mapping of gk.We make the

assumption that the mapped indices (m′, n′) and (r′, s′) are
still integers. Otherwise we can interpolate them to the near-
est integers as we usually do in image registration.

Following the similar argument in [1], we find a pair of
integers (L1, L2) such that for all the k (including k = 0), the
mapped pair (L′

1, L
′

2) = hk(L1, L2) satisfies

F0(w1, w2) → 0 ∀ |w1| ≥ L′

1ws, |w2| ≥ L′

2ws. (7)

Note that h0(L1, L2) = (L1, L2). It is then automatically sat-
isfied that F0(w1, w2) → 0,∀|w1| ≥ L1ws and |w2| ≥ L2ws.
Therefore after deciding on (L1, L2) according to (7), we can
try to estimate F (w1, w2) within the range of [−L1ws, L1ws]×
[−L2ws, L2ws]. Note for each (m′, n′), m′ = 1...M, n′ =
1...N , (6) can be rewritten as the following matrix equation:

YP×1 = AP×4L1L2
X4L1L2×1, (8)

Y(k) = F (k)(g(m′, n′)), k = 1, ..., P
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where r′ = lmod(2L2) − L1, s
′ = l − 2L2bl/2L2c − L2.

When P ≥ 4L1L2, the system is over-determined where a
least-square solution of X can be obtained. Solving the equa-
tion for each (m′, n′), we obtain the estimate of F0(w1, w2)
ranging in [−L1ws, L1ws−ws/M ]×[−L2ws, L2ws−ws/N ]
with spacing ws/M and ws/N for each dimension. Applying
the inverse DFT, we can obtain an estimate of f(x, y) at dis-
crete points of x = 0, y = 0 to x = (M −1)T, y = (N −1)T
with spacing T/2L1 and T/2L2. Comparing to f (0)(i, j), the
resolution is increased by a factor of 2L1 × 2L2.

2.3. Performance Analysis of Super-Resolution with Affine
Motion

As mentioned previously, the conditions on the magnification
factors can be identified as finding a common pair of integers
L1, L2 such that (7) is satisfied for every frame. The follow-
ing theorem formalizes this results:
Theorem 1 If L1, L2 satisfy the following two conditions:

|ekL1 − dkL2|ws ≥ wmax,1, ∀k = 0, 1, ...P − 1; (9)

| − bkL1 + akL2|ws ≥ wmax,2, ∀k = 0, 1, ...P − 1; (10)

where wmax,1, wmax,2 are the maximum frequency of F0, i.e.,
F0(w1, w2) → 0, ∀|w1| ≥ wmax,1 and |w2| ≥ wmax,2, we
can at least achieve a resolution enhancement of 2L1 × 2L2.



We usually choose L1, L2 as the smallest integers that sat-
isfy (9) and (10) since larger L1, L2 in linear equation (8)
only introduce zeros to the vector of X . Padding zeros to
the frequency domain can result more samples in time do-
main, however they are interpolated values from the previous
estimates. There is no new information introduced by larger
L1, L2 to the system. Therefore we will see in the experi-
ments forcing larger L1, L2 usually results in large errors.

The following two corollaries are easy to observe from
Theorem 1. Note that Corollary 2 shows the result corre-
sponding to the special case of pure translational motions,
which coincides with results in [1].
Corollary 1 If we try to increase the resolution by a same
factor for each dimension, i.e., L1 = L2 = L, (9) and (10)
can be simplified as

L ≥ max(
wmax,1

mink(|ek − dk|)ws

,
wmax,2

mink(|ak − bk|)ws

). (11)

Corollary 2 (Tsai and Huang [1]) If motions are pure trans-
lational, i.e., ak = ek = 1, and bk = dk = 0 ∀k, (9) and
(10) are reduced to L1 ≥ wmax,1/ws, L2 ≥ wmax,2/ws.

3. ERROR ANALYSIS AND EXTENSION TO
TEMPORAL SUPER-RESOLUTION

In this section, we discuss issues relating to error analysis,
temporal super-resolution and its implications on the sequence.

3.1. Reconstruction Error Analysis

Notice the reconstructed F̂ (w1, w2) is a sampled version of
the continuous frequency F (w1, w2). Assuming the estimate
of the samples are exact, we have
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According to convolution theory, the inverse DFT is given by
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When we assume the signal is band-limited which suggests
that it is spatially-unlimited, aliasing effects shown in above
equation is inevitable due to frequency domain sampling. There-
fore, although not clearly stated in [1], we see that perfect re-
construction cannot be achieved in general, i.e., 4π2/(MNT 2)·

f̂ [i, j] 6= f(iT, jT ). In fact, such a limitation is expected
since super-resolution is inherently an inverse problem from
partial information. Nonetheless, it is reasonable to assume in
practice, the signal is bandlimited while at the same time tails
off rapidly outside of a certain range in space, i.e., f(x, y) →
0 for (x, y) outside of [−xm, xm] × [−ym, ym]. In this case,
aliasing error is bounded and the proposed algorithm can be
used to provide a good approximation of the original sig-
nal. When the sample interval 2π/(MT ) of the estimate de-
creases, the reconstruction error will decrease. When xm <
MT/2, ym < NT/2, there will be no aliasing.

3.2. Temporal Super-Resolution

Regard a video as a three-dimensional discrete signal, which
is sampled both spatially and temporarily from a continuous
changing scene. We denote a particular frame k as f (k)(i, j) =
f(iT1, jT1, kT2), where T1 is the spatial sampling period and
T2 is the temporal sampling period which is the reciprocal of
the frame rate. Temporal Super-Resolution is to increase the
frame rate of the video, producing intermediate frames. For
the temporal dimension, a single video is only one set of regu-
lar samples. Therefore from sampling theory, the requirement
to have perfect interpolations in time is that the frame rate has
to be larger than the Nyquist rate, i.e., 2π/T2 ≥ 2wmax,3,
where the wmax,3 is the maximum frequency for temporal di-
mension. wmax,3 is affected by several factors such as the
moving velocity of the camera and abrupt scene changes.

4. SIMULATION RESULTS

We report some computer simulated experiments for testing
the frequency-domain SR method with affine motions while
also examining the proposed limits of magnification factors.

(1) Sequence PATTERN: A synthetic LR sequence of
16 images is generated by applying affine motion to a HR
image followed by a 4 × 4 down-sampling. Rotated images
are generated using bilinear interpolation. We pre-filter the
images so that it is bandlimited by the sampling rate, i.e.,
wmax,1 = wmax,2 = ws. The set of affine motions includes
in-plane rotations of 0, 10, 15, 20 degrees and translations of
[0, 0],[0, 2],[2, 0] and [2, 2]. According to Corollary 1 and 2,
we find that when using only translational frames, we can
achieve a magnification of 2 × 2 while a magnification of
4 × 4 can be achieved by processing all the affine frames.
Figure 1 illustrates the frequency-domain SR method. Sam-
ples of affine transformed LR images are depicted in Fig.1(a).
The original HR image is provided in Fig.1(b). The bilinear
interpolation of LR by a factor of 2×2 and 4×4 are shown in
Figs.1(c) and 1(d). The frequency-domain SR reconstructions
of 2× 2 and 4× 4 magnification achieved by processing only
translated frames are shown in Figs.1(e) and (f), respectively.
Finally, the 4× 4 magnification achieved by processing all 16
frames is represented in Fig.1(g). We observe that the pres-
ence of rotated frames increases the achievable magnification
factor. The PSNR of the images in (c)-(g) are reported in
Table I. We note that if we use only translated frames, the re-
construction quality decreases rapidly when the magnification
factor exceeds 2. Whereas, if we rely on affine transformed
frames, the quality of 4×4 reconstruction is greatly improved.

We also examine the effects of the number of frames used.
We try to achieve a magnification of 2×2 by using 2 frames, 3
frames, 6 frames or 9 frames. The resulting PSNR are 10.613
dB, 17.442 dB, 19.509 dB and 20.234 dB correspondingly.
Since P < 4L1L2 = 4 is not sufficient, the reconstruction
quality when using 2 frames and 3 frames are impaired. In-
creasing the number of frames improves the reconstruction



(a)

(b) (c) (d)

(e) (f) (g)

Fig. 1. Frequency-domain super-resolution (SR) methods: (a)
low-resolution (LR) images; (b) original high-resolution (HR)
image; (c) 2 × 2 interpolation; (d) 4 × 4 interpolation; (e)
2× 2 magnification using only translational frames; (f) 4× 4
magnification using only translational frames; and (g) 4 × 4
magnification using all 16 frames.

Table 1. PSNR for Reconstruction Results in Figure 1
Figure (c) (d) (e) (f) (g)

PSNR(dB) 18.236 15.830 19.399 16.342 21.797

while it is also true that after we have sufficient number of
frames, adding more frames only improves PSNR slightly.

(2) Sequence STILLS: We wish to test our achievable
bound for magnification factor with other time-domain SR,
to verify that it is a general property of a image sequence in-
dependent of SR methods. We employ the time-domain SR
algorithm proposed in [3]. We generat a sequence of 24 LR
images by applying a mixture of 0, 10, 20 degree rotations and
8 integer-pixel translations and then down-sampling by a fac-
tor of 4 × 4. The bounds given by Corollary 1 and 2 are once
again 2 × 2 for translated frames and 4 × 4 for affine frames.
Figure 2 and illustrates the performance of time-domain SR
methods. The HR image is depicted in Fig.2(a). LR images
are represented in Figs.2(b) and 2(c). The 4 × 4 magnifica-
tion using 8 translational frames is shown in Fig.2(d). The
4 × 4 and 6 × 6 magnification achieved by processing all 24
frames are illustrated in Figs.2(e) and 2(f), respectively. For
(f), since the size exceeds the original HR, We compare the re-
construction with interpolated HR. We note that using affine
transformed frames can achieve a higher magnification fac-
tor. However, when we continue to increase the magnification
factor, the reconstruction quality begins to degrade.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Time-domain super-resolution (SR) methods: (a) orig-
inal high-resolution (HR) image; (b)-(c) low-resolution (LR)
images; (d) 4 × 4 magnification using 8 translational frames;
(e) 4× 4 magnification using 24 frames; and (f) 6× 6 magni-
fication using 24 frames.

Table 2. PSNR for Reconstruction Results in Figure 2
Figure (d) (e) (f)

PSNR(dB) 19.103 28.494 26.445

5. CONCLUSIONS

In this paper, we introduced a frequency-domainsuper-resolution
(SR) method for image sequences undergoing an affine trans-
formation. We used this approach to derive achievable per-
formance bounds on the resolution enhancement factor of SR
techniques. We observed theoretically and experimentally
that the presence of affine transformations in the image model
results in an increase in the achievable bound and improves
the quality of image reconstruction. We finally presented an
error analysis in image reconstruction under this framework
and discussed an extension of the performance analysis to
temporal SR methods.
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