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ABSTRACT

In this paper, we propose a novel technique for estimating
focused image sequences captured by an out-of-focus cam-
era. The basic concept used in the proposed algorithm em-
ploys multiple images with different blurs from the video se-
quence to estimate the blur model and construct a more robust
method for focused image estimation. This algorithm can be
used to correct focusing errors in the video capture process. It
could potentially be used to replace the expensive apparatus
required for auto-focus adjustments by miniature engines in
many camera devices. We demonstrate the successful perfor-
mance of our approach to focused image estimation through
computer simulation experiments using various blur models.

Index Terms— Focusing, image restoration.

1. INTRODUCTION

Focusing is an important issue in digital camera design. Cur-
rent auto-focus solutions widely applied in industry are mostly
based on different focus measures. They search for the best
focused images while moving the lens and can be tuned to
perform fast. The shortage is that they require a focal-length
changing lens and an accurate engine that can move the lens
with a particular step size. From a different point of view
however, image processing solutions model the out-of-focus
phenomenon as focused images passing through a linear sys-
tem. With the estimation of the point spread function (PSF) of
the lens system, the focused images can be recovered through
a deconvolution process. Discussion in this paper will lie
mainly within this class and concentrate on PSF estimation.
The overall philosophy of estimating PSF and its Fourier

Transform, also known as optical transfer function (OTF), is
based on a fundamental observation, that is the blur character-
istic relates only to the object depth and the camera settings.
Despite the fact that the relationship is usually approximated
by first order optics, this observation verifies itself through the
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success of depth-from-defocus (DFD) algorithms. For exam-
ple, designer in [1] utilizes two settings of camera parameters
for acquiring two differently blurred images. Assuming the
PSF to be a Gaussian function, a close form solution of the
blur parameter is given. More generally, the authors of [2]
approximate the underlying OTF by a parametric polynomial
and estimate the coefficients using a least-square criteria. In a
more recent work [3], the technique of DFD is combined with
stereo pairs and the estimation is performed with the tool of
Markov random fields to improve the accuracy.
DFD for estimating the PSF has a solid and elegant theo-

retical foundation however, it poses a high requirement on the
hardware. Due to the fact that changing camera settings such
as camera aperture and focal length cannot be done without
sophisticated experimental device, it limits the applications in
practice. The algorithm proposed in this paper, on the other
hand, is designed for a ’rigid’ camera whose physical parame-
ters are all fixed. Therefore it can be applied to simple digital
cameras especially mobile-phone cameras. The other novelty
of our algorithm is to exploit multiple images taken by a mov-
ing camera. Multiple images taken in variable positions not
only provide differently blurred images but also reveal addi-
tional resources for improving estimation.
The rest of this paper is organized as follows. In Section

2, we begin with the problem definition and model formula-
tion. In Section 3, we explain the main idea of blur estimation
through three examples of PSF. We then discuss in Section 4
the idea of multiple-image estimation and in Section 5 noise
analysis for the system. Section 6 provides the simulation re-
sults and Section 7 draws the conclusion.

2. CAMERA AND IMAGING MODEL

Assume a moving camera is looking at a static object and tak-
ing a video of it. The camera is a rigid camera, meaning that it
has a fixed lens aperture, focal length and image plane-to-lens
distance. One point in the object projects onto different image
coordinates when the camera moves. In time t and time t

′
, the

camera takes two images, frame k and frame k
′
. The pixel lo-
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cations (x0, y0) in image frame k and (x1, y1) in frame k
′
are

related by a 2D affine transform [4]:[
x1

y1

]
=

z0 − f

z1 − f

[
r11 r12

r21 r22

] [
x0

y0

]
+

[
tx
ty

]
(1)

where r11, r12, r21, r22 are rotation parameters and tx, ty are
translation parameters of the camera motion. z0 and z1 are
distances between the object and the camera lens, in time
t and time t

′
respectively, which are commonly referred as

depths of the object. f is the focal length.
Define s ≡ z0−f

z1−f . Denote the Fourier transform of frame
k and frame k

′
as F0(u, v) and F1(u, v). According to the

affine theorem for 2D Fourier transform [5], the amplitude of
F0(u, v) and F1(u, v) has the following relationship:

|F1(u, v)| =
1
|Δ| |F0(

sr22u − sr21v

Δ
,
−sr12u + sr11v

Δ
)|.
(2)

where Δ ≡ s2(r11r22 − r12r21). Using the motion estima-
tion and stabilization technique in [4], we can compensate for
rotation before we further process the images. Therefore we
only discuss here when the rotation matrix is identity. Then
(2) can be simplified as

|F1(u, v)| =
1
s2

|F0(
u

s
,
v

s
)|. (3)

When a camera is out of focus, the resulting image is
blurred by a specific PSF, whose parameters are uniquely de-
termined by the blur radiusR. In frequency domain, the spec-
trum of blurred image Y (u, v) will be the original spectrum
times the OTFH(u, v, R).

Yi(u, v) = Fi(u, v)H(u, v, Ri), i = 0, 1. (4)

Here we consider the PSF being a symmetric (even) function
whose Fourier transform is real. With (3) and (4), we have

s2|Y1(u, v)| = |Y0(
u

s
,
v

s
)| H(u, v, R1)

H(u/s, v/s, R0)
. (5)

To proceed, we will incorporate the knowledge from optic
geometry. As illustrated in [1], the blur radiuses are given by

Ri = vL(
1
f
− 1

zi
− 1

v
), i = 0, 1. (6)

where v is the image plane-to-lens distance, L is the radius of
lens aperture, and z is the depth of the object. It can be seen
that the blur radius is affected only by the depth of the object
for one particular camera. From the definition of s we can
continue to arrive at

s =
z0 − f

z1 − f
=

R0 + L

R1 + L
× R1 + L − vL/f

R0 + L − vL/f
. (7)

To estimate the focused images from the blurred images,
we need to estimate the OTF, which equals identifying the
blur radiuses. With v, L, f being known camera parameters, it
is able to solve for s,R0, R1, thusH(u, v, R0) andH(u, v, R1),
based on (5) and (7).

3. BLUR PARAMETER ESTIMATION AND IMAGE
RECONSTRUCTION

In this section, we will discuss our algorithm for three types
of PSF. In all the cases, we begin with assuming the energy
conservation constraint, which means H(0, 0, R) = 1. Thus,
s can be solved by noticing the DC components in (5) yields

s =
√

Y0(0, 0)/Y1(0, 0). (8)

3.1. Gaussian Blur Model

When PSF takes the form of a Gaussian function, we have:

H(u, v, R) = exp{−1
2
(u2 + v2)σ2}, (9)

where σ ≈ R/
√

2. Therefore, (5) becomes

s2 |Y1(u, v)|
|Y0(u

s , v
s )| = exp{−1

4
(u2 + v2)(R2

1 − R2
0/s2)}. (10)

Above is true for all u, v so an averaged solution is suggested
in [1] as well as the following:

c ≡ 1
A1

∫ ∫
I1

−4
u2 + v2

ln(s2 |Y1(u, v)|
|Y0(u

s , v
s )| )dudv, (11)

R2
1 − R2

0/s2 = c, (12)

where I1 is the region within which the integral is well-defined
and A1 is the area of I1. With (7), (8) and (12), we can
solve R0 and R1 uniquely. Here gives a solution with ap-
proximation based on the fact that v ≈ f and L � R. We
can get the simplified version of (7) as R1 = sR0, so that
R2

1 − R2
0/s2 = R2

0(s
2 − 1/s2) = c. Hence, R0 =

√
cs2

s4−1 .
This approximation avoids measuring v, L, f and is found to
be accurate enough in experiments.

3.2. Geometric Blur Model

According to geometric optics, the first order approximation
of the PSF takes the form of a cylindrical function in the case
of a circular aperture. Therefore we have

H(u, v, R) = 2
J1(R

√
u2 + v2)

R
√

u2 + v2
. (13)

We adopt the polynomial expansion [6] of a bessel function,

J1(x) =
x

2
− x3

22 · 4 +
x5

22 · 42 · 6 − x7

22 · 42 · 62 · 8 + ..., (14)

and (5) becomes

s2 |Y1(u, v)|
|Y0(u

s , v
s )| = 1 + a1(u2 + v2) + a2(u2 + v2)2 + ...,

a1 = −1
8
(R2

1 − R2
0/s2); a2 =

1
192

(R4
1 − R4

0/s4) +
R2

0

8s2
a1; ...
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If we can identify an, n = 1...N , we can solve for R0 and R1

with (7) and (8). N is the number of coefficients we plan to
identify. Theoretically, identifying only a1 is enough. How-
ever more coefficients are desired for a reliable solution. Thus
the identification problem equals solving the matrix equation:
⎡
⎣ Z(u0, v0)

Z(u0, v1)
...

⎤
⎦ =

⎡
⎣ 1 u2

0 + v2
0 (u2

0 + v2
0)2 ...

1 u2
0 + v2

1 (u2
0 + v2

1)2 ...
1 ... ... ...

⎤
⎦

⎡
⎢⎢⎣

1
a1

...
aN

⎤
⎥⎥⎦

(15)
where Z(u, v) ≡ s2 |Y1(u,v)|

|Y0(
u
s , v

s )| . The LHS vector is K × 1, K
is the number of non-zero frequency components being used.
The matrix in RHS is of size K × N , and the vector in RHS
is the unknown vector of sizeN ×1. An least-square solution
of [a1, ...aN ] will give us an overdetermined equation array
for solving R0 and R1.

3.3. Arbitrary Polynomial Approximation

When we have no prior knowledge of PSF, we can approxi-
mate the OTF by an arbitrary Mth order polynomial. Con-
sider:

H(u, v, R0) = 1 +
∑M

n=1 bn(u2 + v2)n;
H(u, v, R1) = 1 +

∑M
n=1 cn(u2 + v2)n.

According to [2], we have a constraint on b1:

[
∂2H(u, v, R0)

∂u2
+

∂2H(u, v, R0)
∂v2

]|u=v=0 = 4b1 = −R2
0

2
.

Similar constraint applies to c1. One can verify that (13)
satisfies this constraint. Therefore, we have

H(u, v, R1)
H(u/s, v/s, R0)

=
1 +

∑M
n=1 cn(u2 + v2)n

1 +
∑M

n=1 bn(u2 + v2)n/sn

= 1 +
N∑

n=1

an(u2 + v2)n, (16)

with b1 = − 1
8R2

0 and c1 = − 1
8R2

1. an, n = 1, ..., N can be
solved from (15). Here we define

b ≡ [b1/s, ...bn/sn, ...bM/sM ]T , c ≡ [c1, ...cn, ...cM ]T ;

a(1) ≡ [a1, ..., an, ..., aM ]T , a(2) ≡ [aM+1, ..., aN ]T ;

As long as N ≥ 2M , a close form solution of b and c can be
given by [7]:

c = −A−1a(2); b = c−Ka(1), (17)

where

A ≡

⎡
⎢⎢⎣

aM ... a1

aM+1 ... a2

... ... ...
aN ... aM

⎤
⎥⎥⎦ ;K ≡

⎡
⎢⎢⎣

1
c1 1 O
... ... ... ...

cM−1 cM−2 ... 1

⎤
⎥⎥⎦ .

Once we get the estimation of the transfer function, we
can process the degraded image with an inverse filter or a
Wiener filter to recover the focused image.

4. MULTIPLE IMAGE ESTIMATION

All above discussion is based on two frames. We can also
use three or more frames for estimation, in order to improve
the accuracy and robustness. For instance, in the case of
the Gaussian PSF, if we have a third image with spectrum
Y2(u, v), we can form another set of equations:

s
′2 |Y2(u, v)|
|Y0( u

s′ , v
s′ )| = exp{−1

4
(u2 + v2)(R2

2 − R2
0/s

′2)};

s
′
=

√
Y0(0, 0)/Y2(0, 0);

R2 = s
′
R0; (18)

using the simplified version of (7). Along with (10), (8)
and R1 = sR0, we have six equations for five unknowns. It
is overdetermined, which enables us to use information from
three frames to form one estimation. Define

w ≡ 1
A2

∫ ∫
I2

−4
u2 + v2

ln(s2 |Y1(u, v)|
|Y0(u

s , v
s )|s

′2 |Y2(u, v)|
|Y0( u

s′ , v
s′ )| )dudv;

(19)
where the meanings ofA2 and I2 are the same as in (11). The
the estimation of R0 is then given by

R0 = ss
′
√

w

s2(s′4 − 1) + s′2(s4 − 1)
. (20)

As we can see in the simulation results, the estimation based
on three images improves the performance of the algorithm.

5. ERROR ANALYSIS

The performance of our estimation algorithm can be evaluated
by introducing an additive noise in the model:

Yi(u, v) = H(u, v, Ri)Fi(u, v)+Ni(u, v); i = 0, 1. (21)

Using the Gaussian blur model and simplified version of (7)
as in Section 3.1, we can give the estimation of OTF for first
image with presence of noise as:

Ĥ(u, v, R0) = [s2 Y1(u, v) − N1(u, v)
Y0(u/s, v/s) − N0(u/s, v/s)

]
s2

s4−1 .

The estimation of the focused image is given by F̂0(u, v) =
Y0(u, v)/Ĥ(u, v, R0), while the noise free estimation is
F0(u, v) = Y0(u, v)/H(u, v, R0). This makes us arrive at
the noisy version of focused image estimate as:

F̂0(u, v) = F0(u, v)[
Y1(u, v) − N1(u, v)
Y0(u

s , v
s ) − N0(u

s , v
s )

· Y0(u
s , v

s )
Y1(u, v)

]
−s2

s4−1 .

(22)
Notice that the original additive noise becomes multiplica-

tive noise in the final estimation. The statistical characteristic
of the noise also changes. The random variable inside the
square bracket is the ratio of two normal random variables
with non-zero mean and its distribution has been studied in
[8]. Based on that, we can also give the distribution and ex-
pectation of the noise.
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6. SIMULATION RESULTS

We test the effectiveness of our algorithm in images and in
video sequences captured by a digital camcorder. Here we
report some of the experimental results.
Fig.1 shows (a) the original test image, (b) the image blurred

by a Gaussian PSF and (c) the reconstructed image. (The sec-
ond set of images is not shown here due to space limit). It can
be seen that the blur effects are removed in the reconstructed
image. The true blur parameter σ is 0.0354, and our estima-
tion is 0.0361, which is a close estimation.
Fig.2 (a) shows the frame 1, frame 30, frame 60 and frame

90 of an indoor scene sequence. In this sequence, the camera
is heading forward along the optical axis. Fig.2 (b) shows the
resulting degraded frames blurred with the geometric model.
Fig.2 (c) is the estimation of the focused frames. It can be
noticed that the estimation is close to the original one.
Fig.3 (a) shows the frame 20, 50, 80 and 110 of same in-

door sequence as in Fig.2, and Fig.3 (b) shows the sequence
blurred by a Gaussian PSF instead. Fig.3 (c) is the estimation
of the focused frames using two frames while Fig.3 (d) is the
estimation using three frames. As we can see, three-frame es-
timation performs steadier than the two-frame one, especially
in the first two frames where the latter makes mistakes.

Fig. 1. (a) Original test image, (b) blurred image and (c) re-
constructed image.

Fig. 2. (a) Original test sequence, (b) blurred sequence and
(c) reconstructed sequence.

7. CONCLUSIONS

In this paper, we introduced a novel method for focused image
estimation from defocused video sequences. The proposed
algorithm relies on the differences in blur characteristic of

Fig. 3. (a) Original test sequence, (b) blurred sequence, (c)
reconstructed sequence based on two frames and (d) recon-
structed sequence based on three frames.

multiple images resulting from camera motion in video se-
quences. This notion is exploited to estimate the blur model
and obtain a more robust estimation of the focused sequence.
The proposed algorithm can be used to correct out-of-focus
video sequences as well as replace the expensive auto-focus
apparatus in modern cameras. Noise performance is analyzed
and computer simulations prove the success of our approach.
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