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ABSTRACT
Particle filters have been introduced as a powerful tool to es-
timate the posterior density of nonlinear systems. These fil-
ters are also capable of processing data online as required in
many practical applications. In this paper, we propose a novel
technique for video stabilization based on the particle filter-
ing framework. Scale-invariant feature points are extracted to
form a rough estimate which is used to model the importance
density. We use a constant-velocity Kalman filter model to
estimate intentional camera movement. We also prove that
the particle filtering estimate will lower the error variance.
The superior performance and robustness of our algorithm is
demonstrated by computer simulations.

Index Terms- Image motion analysis, Image sequence
analysis, Particle tracking, Monte Carlo methods

1. INTRODUCTION

Cameras mounted on hand-held devices and mobile platforms
such as cars and planes capture unstable images. Rattled cam-
era motion and platform vibrations degrade the visual qual-
ity of video images. Different video stabilization techniques
have been proposed to construct stable images. A critical step
in stabilization is motion estimation. In [1], a six-parameter
affine model is used to describe the inter-frame transforma-
tion. The model parameters are estimated by minimizing a
p-norm-based cost function. Sung-Jea Ko et.al employs a
gray-coded bit-plane matching [2] to estimate fast motion.
Sub-image phase correlation based global motion estimation
is proposed by S. Erturk [3], to find the translation along x
and y axis. These are intensity based algorithms, while in [4],
C. Morimoto and R. Chellappa solve the 2D motion equations
using features on the horizon, which is a strong visual cue in
off-road situations. In [5], the authors deal with on-road sit-
uation by detecting the lane lines and road vanishing point in
the image as global features.

Our system employs a particle filtering [6] framework for
global motion estimation. Particle filters are commonly used
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in video tracking and pose estimation, but not yet applied to
video stabilization. It can be seen in this paper that particle fil-
ter allows us to solve the problem with both feature matching
and intensity optimization method. Therefore, our algorithm
is accurate due to the effective feature points extracted and
more robust than common feature tracking method.

The rest of this paper is organized as follows. In Section 2,
we describe the framework of estimating global affine motion
using particle filters. Then in Section 3, we discuss the way
of dealing with intentional motion and motion compensation.
Experimental results are presented in Section 4 and Section 5
draws the conclusion.

2. PARTICLE FILTERING FOR GLOBAL AFFINE
MOTION ESTIMATION

Assume a hand-held camera is looking at a static scene; how-
ever, the video frames obtained suffer from jitters produced
by the camera's 3D rotation R313 and translation L3 1 due
to the unsteady hand. Under the 3D camera model, pixel lo-
cations (X, y) in image frame k and (x', y') in frame k + 1 are
related by

[ x

y I [
R1l R12 R13
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Ix
y + ly
A] [z I (1)

where s is a scale factor and A is the focal length. From the
first two columns of the matrix, we get

X I sRL1 1 1 sR13A+ lx
LS L sR21 ] ] + L sR23A+ly (2)

Equ. (2) shows that using a 2D affine transformation one can
get the same visual effects as using a 3D transformation, with
different parameters. With the assumption that the rotation
angle outside the image plane is quite small between succes-
sive frames, and the scene is far away from the camera thus
s = 1, the above model can be simplified as

oS -iS1 F , 1
Xy L COS Ok -SS1 Ok x TXk
y [Sin0Ok COSOk TYk

(3)
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where Ok denotes the rotation angel in the image plane, and
TXk, Tyk are translation displacements along x and y axis
respectively. Denote the first frame to be the stable reference
frame, our task in motion estimation is to determine the above
three parameters referring to the reference frame.

2.1. Particle Filtering Framework

The above situation can be considered as a Bayesian track-
ing problem, where a Markov discrete-time state-space model
can be introduced. The state-space model is defined with a
state vector Xk = [TXk, Tyk, Ok]T and a measurement z. The
fundamental idea of particle filter estimation is to recursively
approximate the posterior pdf p(XO:k Z1: ) by a set of parti-
cles {xi, i = 0, 1, ...N} with associated weights {w, i
1, 2, ...N}, where N is the number of particles and k is the
time step. In our case, each frame is considered as a step of
time. The particles xit q(x) are drawn from a proposal q( ),
which is called importance density. Here we generate samples
xi based on a Gaussian importance density stated as follows:

Xk =Xk-I + nt (4)

nk NG(AXk, >) (5)
where Xk 1 is the estimation of the state in time step k -1.
We add the previous motion because we want all the param-
eters estimated are relative to the reference frame, which can
directly been used for compensation. NG (AXk,>) refers to
the Gaussian function, with mean Axk and covariance matrix
S. In this problem, it is reasonable to assume that the three
dimensions of Gaussian function are independent. The mean
of Gaussian function, Axk = [ATXk, ATykL AOkI]T can be
simply set to zero in the case of a prior distribution. We will
further explore this issue in Section 2.2.

The desired weights should perform as an evaluation on
how close the state suggested by each particle is to the true
state. Since we have N guesses of the transformation ma-
trix, we apply all the N inverse transforms to an original im-
age and get N candidate images Ai. Then we compare these
images with the reference image Ao to tell the similarities be-
tween them, hence the weights of particles. We choose Mean-
Square-Error and edge wrapping technique for comparison.
MSE comparison calculates the mean-square error Mi of the
grayscale from pixel to pixel between Ai and Ao. The likeli-
hood is a decreasing function of Mi given by

PMSE Cx27FUM exp{ 2 (6)V/277M CoM
The edge wrapping comparison employs the edge detection
technique proposed in [7]. We can construct two images con-
taining only edge portions from both Ai and Ao, respectively.
Then we calculate the correlation Ri of two edge images. The
likelihood of edge wrapping is given by

1 RO
sedge 7F 2o47(7

where CrM and 7E in Equ.(6) and Equ.(7) are adjustable stan-
dard deviations. Therefore, the normalized weights are given
by

i MSE edge

i= 1 MSE edge
(8)

Once we obtain the weight for each particle, we will ap-
proach the true state by a discrete weighted approximation,

N

Xk ZE wkxik
i=l

(9)

where the estimated state tells the estimated values of global
affine motion parameters, xk = [Tfxk, Tyk, Ok]T

2.2. Importance Density Using Scale-Invariant Features

The choice of a good importance density is the crucial step in
the design of particle filter. A technique is proposed here to
encourage particles be generated close to true posterior den-
sity.

We use feature tracking to get the means of the Gaussian
density function, ATXk, ATyk, AOk, which have been men-
tioned in Section 2.1. The feature points we use are obtained
based on SIFT algorithm [8]. SIFT extracts and connects fea-
ture points in images which are invariant to image scale, rota-
tion and changes in illumination. Once we have correspond-
ing pairs, we can use them to determine the transform matrix
between two images. Equ.(3) can be rewritten as

, , ~~~~cosA\Sk - sin Aok,[ y:xrI y Sin[CAOk COSlfOk1
ATXk ATYk

(10)
where (x, y) and (x', y') are corresponding feature points.
We need only two pairs to determine an unique solution. How-
ever, more matches can be added as shown in (10). The over-
determined system is in the form of Y = XA, which can be
easily solved under Least-Square criteria by A = [XTX] -IXTY.

The values of ATXk, ATyk and AOk serve as a rough es-
timation and hence the means of importance density function.
It helps us to avoid generating useless particles and hence to
keep the computation cost low enough to achieve online per-
formance.

2.3. Properties of Particle Filtering Estimation

Instead of using directly the rough estimation Axk yielded
from (10), we use an advanced particle filtering algorithm for
estimation due to its desirable properties stated below.

1) Smoothing property ofparticle filters. In the situation
we described above, the errors between true state and two
estimations:Ek = Xk Xk and ek = AXk-Xk is evaluated
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by calculating their variance Var(Ek) and Var(ek)). It can be
shown that, by satisfying that

N

E(Wi)2 < Ck < 1,
i=l

(1 1)

we can achieve Var(Ek) < Var(ek), in all the three di-
mensions of the state. Ck is a constant related to the impor-
tance density and w' is the normalized weight obtained from
(8). And we can also prove that the above requirement is al-
ways satisfied by a sufficiently large N, under the constraint
thatEZ 1 w' = 1. It means that particle filtering gives es-
timation with lower error variance, hence the estimation is
smoother over time.

2) Convergence property of particle filters. In [9], it is
shown that the estimation of particle filter converges in mean
square sense, and the rate of convergence is in 1/N. There-
fore, in every frame, the estimation of the motion vector con-
verges very fast to the true values.

3) Robustness of particle filters. SIFT algorithm might
connect wrong feature points, especially when pictures are
blurred by rapid shakes of the camera. Computing the trans-
form matrix from incorrect correspondences will produce bad
results. On the contrary, particle filter performs well even
when the output of SIFT is inaccurate. Since particle filter re-
lies on samples around the SIFT output rather than the output
itself, and incorporates different properties of the images, it is
more resistent to mistakes that single algorithm would make.
The practical necessity will be proved by the experimental re-
sults reported in Section 4.

3. INTENTIONAL MOTION ESTIMATION AND
MOTION COMPENSATION

When the camera moves with the user, namely, the frames
in the video observe an intentional motion, we cannot com-
pensate for the global motion directly. Instead, we should
estimate the desired motion and compensate for the unwanted
motion caused by camera vibration. We use the Kalman fil-
ter based estimation technique proposed in [1]. Once we get
the intentional motion vector [TXd, Tyd, oJT, we can com-
pensate for the unwanted motion by applying the following
inverse transform

[ 1 F COS -sin l (l1 TOk_ Txk 1)
] [sin Ok COS 3k Tyk -Tyk]

(12)
where /k k - Ok. (x, y') and (x5, y') is the pixel loca-
tions of unstable and stabilized image, respectively.

Another important issue here is how to deal with moving
objects. In a situation that background moves with the shak-
ing camera, we can tell the moving objects by noticing the
moving velocities of different parts in the images. It can be
assumed that the velocity of the moving objects is much larger

than that of the background. Therefore, by comparing two
successive frames, the parts which have moved an extraordi-
narily large distance should be isolated before estimating the
global motion and intentional motion.

4. EXPERIMENTAL RESULTS

We test the effectiveness of our algorithm in several real-life
video sequences captured by a hand held digital camera with-
out any image stabilization technique. Here we report some
of the experimental results.

Fig.1 shows the frames 1 (reference frame), frame 30,
frame 60 of an indoor static scene sequence, with both origi-
nal images (Fig. 1 (a)) and stabilized images (Fig. 1 (b)). Note
that the stabilized images remain motionless with respect to
the reference frame, regardless of the rotation and translation
of the camera.

Fig. 1. Original (a) and stabilized (b) images for an indoor
sequence

Fig.2 (a) shows the frame 1 (reference frame), frame 50,
frame 60 of an outdoor scene sequence. In this sequence, not
only the camera is vibrating, but a car is also passing by in the
scene. Fig.2 (b) is a test output using simply the parameters
obtained from SIFT points, AXk. Fig.2 (c) is the stabiliza-
tion output of our complete particle filter algorithm. It can
be noticed that when SIFT tracks wrong feature points due to
the blurring, the estimation is incorrect. Yet, as shown in (c),
particle filter can recover itself and give steady performance.

Fig.3 shows three frames of a road scene sequence observ-
ing intentional motion, with both original images (Fig.3 (a))
and stabilized images (Fig.3 (b)). The red cross tags the road
vanishing point in the first frame, and the location is fixed
through all the frames. As we can see, the red cross remains
in the road vanishing point in all the three frames of the stabi-
lized video.

Fig.4 shows the ground truth of the global motion, the
estimation results of our global and intentional motion esti-
mation. We also compute in this case the RMSE between
originally stable image and unstable images, and the RMSE
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Fig. 2. Original (a) and stabilized (c) images for an outdoor
sequence, with a comparison to SIFT output (b)

Fig. 3. Original (a) and stabilized (b) images for a road scene
sequence

between originally stable image and stabilized images. The
former is 362.69 in average and the latter is 59.36 in aver-
age for 200 frames. The error is reduced largely in stabilized
sequence, which indicates effectiveness of the algorithm.

5. CONCLUSION

In this paper, we have presented a novel approach for video
stabilization. We use particle filters to estimate the global mo-
tion between adjacent frames. Desired motion estimation has
also been implemented to extract abrupt movements for com-
pensation. Experiments have proved that our algorithm yields
robust results. The flexibility of particle filters allows the al-
gorithm be further developed and applied to variant situations.
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